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Abstract—Monte-Carlo tree search (MCTS) is a new tech-
nique that has produced a huge leap forward in the strength
of Go-playing programs. An interesting aspect of MCTS that
has been rarely studied in the past is the problem of time
management. This paper presents the effect on playing strength
of a variety of time-management heuristics for 19× 19 Go.
Results indicate that clever time management can have a very
significant effect on playing strength. Experiments demonstrate
that the most basic algorithm for sudden-death time controls
(dividing the remaining time by a constant) produces a winning
rate of 43.2±2.2% against GNU Go 3.8 Level 2, whereas our
most efficient time-allocation strategy can reach a winning rate
of 60±2.2% without pondering and 67.4±2.1% with pondering.

Keywords-Monte-Carlo tree search, game of Go, time man-
agement

I. I NTRODUCTION

Monte Carlo tree search (MCTS) is a kind of best-first
search that tries to find the best move and to keep the
balance between exploration and exploitation of all moves.
MCTS was firstly implemented and applied to several Go-
playing programs, such as Crazy Stone [1], the 9×9 winner
of Computer Olympiad in 2006 and Mogo [2], the 19×19
winner of Computer Olympiad in 2007. Along with the emer-
gence of UCT [3], the huge success of MCTS stimulated
profound interest among Go programmers. So far, many
enhancements of MCTS have been proposed and developed,
such as RAVE [4] and progressive bias [5], to strengthen its
effect. Plenty of comprehensive studies were also focused
on the policy and better quality of the playout [6].

One of the interesting aspects of MCTS that remains to
be investigated is time management. In tournament play, the
amount of thinking time for each player is limited. The
most simple form of time control, called sudden death,
consists in limiting the total amount of thinking time for
the whole game. A player who uses more time than the
allocated budget loses the game. More complicated time-
control methods exist, like byo-yomi [7], but they will not
be investigated in this paper. Sudden death is the simplest
system, and the most often used in computer tournaments.
The problem for the program consists in deciding how much
of its time budget should be allocated to each move.

Some ideas for time-management algorithms have been
proposed in the past [8], [9], [10], [11], [12]. Past research on

this topic is mostly focused on classical programs based on
the alpha-beta algorithm combined with iterative deepening.
The special nature of MCTS opens new opportunities for
time-management heuristics. Many ideas have been dis-
cussed informally between programmers in the computer-
Go mailing list [13], [14]. This paper presents a systematic
experimental testing of these ideas, as well as some new
improved heuristics.

One particular feature of MCTS that makes it very
different from alpha-beta from the point of view of time
management is its anytime nature. Every single random
playout provides new information that helps to evaluate
moves at the root. There is no need to wait for a move
to finish being evaluated, or for a deepening iteration to
complete.

In this paper, an enhanced formula and some heuristics
are proposed. A state-of-the-art Go-playing program Erica
was used to run the experiments on 19×19 Go and the result
shows significant improvement in her playing strength.

II. M ONTE CARLO TREE SEARCH IN ERICA AND

EXPERIMENT SETTING

Erica is a state-of-the-art Go-playing program as the PhD
research of the first author. In 2010, Erica scored 1st and
4th position in September and April KGS 9x9 Go bot
tournament respectively, and scored 3rd position in August
KGS 13x13 Go bot tournament. In Erica, standard MCTS
and several enhancements are implemented. After the end
of search, the most visited candidate move in the root
node is selected to play. The reason of such selection is
that the algorithm UCB1 ensures the best move is played
exponentially more often than other moves when the rewards
are in [0,1].

All the experiments were preformed on Erica, running
on Dual Xeon quad-core E5520 2.26 GHz. In the 19×19
empty position, Erica ran 2,600 simulations per second on
single core. No opening book is used by Erica, so that the
time allocation formula takes effect immediately from the
first move, rather than being delayed by the opening book.
The improvement of the playing strength was estimated by
playing with GNU Go 3.8 Level 2 with time control of
40 secs sudden death for Erica and no time limitation for
GNU Go. Erica was set to resign if the UCT mean value of



Table I
FIXED PLAYOUTS PER MOVE AGAINST GNU GO 3.8 LEVEL 2, 500

GAMES, 19×19

Playouts Win Rate Erica’s Time GNU Go’s Time
500 39±2.2% 19.6s 40.3s

1000 61±2.2% 46.3s 44.9s

Table II
BASIC FORMULA AGAINST GNU GO 3.8 LEVEL 2, 500GAMES, 19×19

C Win Rate Erica’s Time GNU Go’s Time
20 13.4±1.5% 36.5s 40.7s
50 36.6±2.2% 32.4s 44.2s
80 43.2±2.2% 27.2s 42.7s

100 43.2±2.2% 24.5s 43.7s
120 37.2±2.2% 21.9s 40.5s
200 32.4±2.1% 14.7s 39.6s
300 25.0±1.9% 10.5s 37.1s

the root node is lower than 30%. For the reference to the
playing strength and search speed of Erica, Table I shows
the winning rate against GNU Go 3.8 Level 2, with fixed
500 and 1000 playouts per move. Erica spends 19.6 secs and
46.3 secs on average for each game, respectively. In a sense,
fixed playouts per move is also a kind of time management
that risks using too less time or losing by timeout.

III. B ASIC FORMULA

In this paper, the remaining time left to the program
for the game is defined as RemainingTime. The allocated
thinking time given by the time management formula for
a position is defined as ThinkingTime. The most basic and
intuitive time management formula is dividing the remaining
time by a constant to allocate thinking time.

ThinkingTime=
RemainingTime

C

According to the basic formula, most of the thinking time
is allocated to the first move, then it is decreased gradually
until the end of the game. Table II shows the result of various
C for the basic formula. Erica used less total thinking time
on average whenC is bigger, 36.5 secs forC= 20 and 27.2
secs forC = 80. However, these 9 seconds of additional
thinking time did not bring any improvement to the playing
strength (13.4% to 43.2%).

Two observations can be made for MCTS on 19x19 Go.
Firstly, using more total thinking time is not bound to
stronger playing. Conversely, using less total thinking time
may be much stronger if the time is effectively and cleverly
allocated. Secondly, allocating more thinking time in the
beginning of the game, or the opening stage, is a waste,
especially for a program that has not any form of opening
or joseki database.

Table III
ENHANCED FORMULA (C= 80) AGAINST GNU GO 3.8 LEVEL 2, 500

GAMES, 19×19

MaxPly Win Rate Erica’s Time GNU Go’s Time
20 42.8±2.2% 24.9s 43.7s
40 46.4±2.2% 27.1s 43.3s
60 43.8±2.2% 26.5s 43.8s
80 49.2±2.2% 25.8s 42.8s

100 47.4±2.2% 24.9s 43.7s
120 46.0±2.2% 23.6s 42.9s
140 48.0±2.2% 22.2s 42.1s
160 47.4±2.2% 21.2s 41.7s
180 44.8±2.2% 19.6s 42.3s

IV. ENHANCED FORMULA DEPENDING ON MOVE

NUMBER

The basic formula is reasonable since the characteristics
of MCTS ensure the more accurate search result in the
endgame. However, its main drawback is that it allocates
too much time to the opening stage. To remedy such weak
point, a simple idea is to make the denominator of the
basic formula depend on the move count so as to allocate
more time in the middle game, where the complicated and
undecided semeai and life-and-death conditions appear most
frequently. The following is an enhanced formula based on
such an idea.

ThinkingTime=
RemainingTime

C+max(MaxPly−Ply,0)

(Ply=0,1,2...)
By this formula, if the program is Black,

RemainingTime/(C + MaxPly) is assigned to the first
move, RemainingTime/(C + MaxPly− 2) to the second.
It reaches the peak and goes back to the form of the
basic formula in MaxPly with the value RemainingTime/C.
Figure 1 gives an example of time per move forC= 80 and
MaxPly = 160. The result of different MaxPly is shown
in Table III. For comparing with the best experimental
performance of the basic formula,C is fixed at 80. The
winning rate of Erica is improved from 43.2% to 49.2%
for MaxPly = 80. This strongly confirms the promising
effectiveness of the enhanced formula.

A similar formula based on the principle of playing faster
in the beginning was proposed by Yamashita [14]:

ThinkingTime=
RemainingTime

60− (Ply+1)/10

(Ply=0,1,2...)
The winning rate of this time-allocation strategy was

measured after 500 games to be 40.8±2.2%. It performs
even worse than the basic formula. As shown on Figure 1,
the Yamashita formula still wastes too much time in the
beginning of the game.



RemainingTime / 80
RemainingTime / (80 + max(160 - Ply, 0))
RemainingTime / (60 - (Ply + 1) / 10)
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Figure 1. Thinking time per move, for different kinds of time-allocation
strategies.

V. SOME HEURISTICS

In this section, the statistical information of the root node
is used to dynamically adjust the thinking time. This makes
the time allocation stochastic, depending on the internal
situation of MCTS. This is correlated with the formula in se-
lection stage. In the first section, the UCT selection formula
in Erica is introduced. The following sections described the
heuristics that works successfully in the experiments.

A. UCT formula in Erica

The UCT formula in Erica, as shown in the following, is
a combination of UCT, RAVE and progressivebias.

score=(1−coefficient)×UCT+

coefficient×RAVE+

progressivebias

Coefficient is the weight of RAVE according to [15]. Pro-
gressive bias serves as a prior [5]. An exploration term is
added to UCT and progressive bias is computed with many
light-weight and heavy-weight features, enumerated partly
in [6]. In the selection stage of MCTS, the move with the
largest score is selected to play.

B. Unstable-Evaluation Heuristic

This heuristic was firstly suggested in [13] and is used af-
ter the end of searching for ThinkingTime. The key concept
is that if the most visited move has not the largest score, that
means either the most visited move was becoming of low
score or a better move was just being found or a potential
good move was still exploited near the end of the search. For
making sure which move is the best, search is performed for
another ThinkingTime/2. The result in Table IV shows that
this heuristic is very useful. Erica used around 4 secs more
on average and the winning rate was raised from 47.4% to
54.6% withC = 80 and MaxPly= 160. The improvement
demonstrates that such additional 4 secs search effort was
cleverly performed in the right occasions.

Table IV
ENHANCED FORMULA (C= 80) WITH UNSTABLE-EVALUATION

HEURISTIC AGAINST GNU GO 3.8 LEVEL 2, 500GAMES, 19×19

MaxPly Win Rate Erica’s Time GNU Go’s Time
80 57.2±2.2% 30.2s 37.8s
100 55±2.2% 29.3s 37.6s
120 50.2±2.2% 27.7s 41.2s
140 54.8±2.2% 26.8s 42.1s
160 54.6±2.2% 25.1s 41s
180 49.4±2.2% 24.1s 41.2s
200 51.6±2.2% 23s 40.9s

Table V
ENHANCED FORMULA (C= 80 MAX PLY = 160) WITH

UNSTABLE-EVALUATION HEURISTIC AND THINK LONGERWHEN

BEHIND (T = 0.4) AGAINST GNU GO 3.8 LEVEL 2, 500GAMES,
19×19

P Win Rate Erica’s Time GNU Go’s Time
1.0 60.0±2.2% 27.5s 39.1s
1.5 58.8±2.2% 28.1s 44.0s
2.0 55.2±2.2% 28.0s 43.2s
2.5 53.8±2.2% 28.9s 44.0s
3.0 53.6±2.2% 28.8s 43.5s

C. Think Longer When Behind

The main objective of time management for MCTS is to
make the program think, in every position during the whole
game, for appropriate time to maximize its performance and
to win the game. As a result, time management when losing
becomes meaningless, since the program will lose anyway,
no matter how much time is allocated. This fact introduces
the heuristic of thinking anotherP× ThinkingTime when
behind, in which UCT mean of the root node is lower than
a thresholdT. Since this heuristic is also applied after the
end of searching for ThinkingTime, the pseudo code of
combining these two heuristics is described in Algorithm 1,
to clarify the sequence.

Algorithm 1 Think Longer When Behind

ThinkingTime← AllocateThinkingTime()
Think(ThinkingTime)
if Root.UCTmean< T then

Think(P×ThinkingTime)
end if
if MostVisitedMove is not HighestValueMovethen

Think(ThinkingTime/2)
end if
Play(MostVisitedMove)

Table V shows this heuristic further improves the winning
rate of Erica from 54.6% to 60% withT = 0.4 andP= 1.
This indicates that it is effective to make the program think
longer to try to reverse the situation when behind.

VI. U SING OPPONENT’ S TIME

This section discusses the policy of using opponent’s
thinking time, usually called pondering. The most basic



Table VI
STANDARD PONDERING AGAINST GNU GO 3.8 LEVEL 2, 500GAMES,

19×19

MaxPly Win Rate Erica’s Time GNU Go’s Time
140 67.4±2.1% 28.6s 43.2s
160 66.2±2.1% 27.2s 43.9s
180 64±2.1% 25.8s 43s

type of pondering, to search as usual when opponent is
thinking then re-use the subtree, is discussed in subsection A.
Subsection B presents another type of pondering, to search
and focus on a fixed number of the guessed moves. A
heuristic of pondering, reducing thinking time according to
simulation percentage of the played move in pondering, is
given in subsection C. In all the experiments, the enhanced
formula with C = 80 and unstable-evaluation heuristic are
applied. MaxPly was set to 140, 160 and 180 for faster
testing speed.

A. Standard Pondering

Pondering, thinking when the opponent is thinking, is a
popular and important technique for Go-playing programs.
It enables the program to make use of the opponent’s time,
rather than simply wait and do nothing. In MCTS, the
simplest type of pondering, called Standard Pondering, is
to search as if it’s our turn to play and re-use the subtree
of the opponent’s played move. Table VI shows the result
of Standard Pondering. Erica got a big jump in the playing
strength (for example, from 54.8% to 67.4% withC = 80
and MaxPly= 140). GNU Go used more thinking time
than Erica during the game, so this experiment might over-
estimate the effect of pondering. Still, it is a clear indication
that pondering can have a strong effect on playing strength.

B. Focused Pondering

The other type of pondering, called Focused Pondering,
consists in searching exclusively a fixed numberN of
selected moves, which are considered to be most likely to be
played by the opponent. The priority of a move to be selected
is the score of UCT formula as mentioned previously. If the
opponent’s played move is among the selected moves, it is
called a ponder hit, otherwise a ponder miss. The prediction
rate (PR) is defined as the proportion of the ponder hits,
which is ponder hits/(ponder hits+ponder misses). The result
of Focused Pondering withN = 10, shown in Table VIII
indicates that its performance is very limited. ForN = 5,
shown in Table VII, the strength of Focused Pondering is
almost identical to that of Standard Pondering. This is maybe
because the prediction rate (42% forN = 5 and 57% for
N = 10) is not high enough so that the actual played move
was not searched as much on average as Standard Pondering
would do. The score 69.8% forN = 5 and MaxPly= 160 is
likely to be a noise. After a lot of testings, no good result
can be found for Focused Pondering.

Table VII
FOCUSEDPONDERING (N = 5) AGAINST GNU GO 3.8 LEVEL 2, 500

GAMES, 19×19

MaxPly PR Win Rate Erica’s Time GNU Go’s Time
140 42.1% 67±2.1% 28.2s 43.4s
160 41.7% 69.8±2.1% 27.6s 43.7s
180 42.8% 62±2.2% 25.8s 43.3s

Table VIII
FOCUSEDPONDERING (N = 10) AGAINST GNU GO 3.8 LEVEL 2, 500

GAMES, 19×19

MaxPly PR Win Rate Erica’s Time GNU Go’s Time
140 57.1% 62±2.2% 27.8s 43.4s
160 57.3% 62.2±2.2% 27.2s 44.1s
180 57.5% 61.8±2.2% 25.9s 43.6s

The performance of pondering is entirely decided by the
search amount of the played move. The tradeoff is between
N, the number of selected moves, and the expected search
amount that will be performed on them. Strictly speaking,
Standard Pondering is also a form of Focused Pondering,
with selecting every legal move in the position and 100%
prediction rate, to guarantees the played move is in the
consideration anyway, even if it is rarely visited.

To evaluate a pondering strategy, it is better to test against
an opponent that also ponders. For this end, Erica was set
to play against herself with different pondering policies.
The result of self-play given in Table IX shows that the
performance of Focused Pondering is still not significant.
It scores 52.8% forN = 3, with a very high prediction rate
(53.9%). This again shows the poor performance of Focused
Pondering, since it will perform much worse when against a
different program along with a much lower predication rate.

C. Reducing ThinkingTime according to the simulation per-
centage

This heuristic is based on the popular idea in human
playing: play faster if we guess right in pondering. In MCTS,
the degree of rightness or wrongness for a guess can be
quantified to the percentage of search performed on the op-
ponent’s played move during pondering. And the amount of
search can be easily translated to the simulation percentage.
In practice, thinking faster means reducing ThinkingTime
by the search time spent on the played move. Assume that
opponent’s thinking time ist, and the simulation percentage

Table IX
SELF-PLAY: FOCUSEDPONDERING AGAINST STANDARD PONDERING,

BOTH WITH ENHANCED FORMULA (C= 180, MAX PLY = 160), 500
GAMES, 19×19

N PR Win Rate
1 33.7% 52.6±2.2%
3 53.9% 52.8±2.2%
5 66.4% 49.2±2.2%
10 86.2% 47.8±2.2%



of the played move in pondering iss (0≤ s≤ 1), then the
reduced time ist×s.

Besides saving time for the rest of the game, playing faster
also prevents the opponent from stealing thinking time. The
experiment result of self play indicates that this heuristic
does not improve performance significantly. Combined with
Standard Pondering, its winning rate is 52.4%±2.2, after 500
games, against Standard Pondering. It scores 53.8%±2.2,
combined with Focused Pondering (N = 3).

VII. C ONCLUSION

Experimental results presented in this paper demonstrate
the effectiveness of a variety of time allocation strategies.
Playing strength can be improved very significantly with a
clever management of thinking time.

An interesting direction for future research would consist
in finding good time-allocation schemes for other board
sizes. Time management policies are very different between
9×9 and 19×19 Go. On 9×9 Go, the opening book can
be very deep to delay the occasion when the time allocation
formula is applied. Besides, owning to much smaller search
space, the search result of MCTS is usually much more
accurate. This explains the preference for allocating more
time in the opening stage.
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