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1 Naive minimization

First consider upper bounds on the typical performance of algorithms whose
only assumption about the relationship between the mean of a random vari-
able being sampled and its parameter x is that the mean as a function of x
has only one local minimum within the range of interest. (Some assumption
of that kind is necessary to permit drawing conclusions about the mean at x
values that have not yet been sampled.) I will call such algorithms naive to
indicate that they do not make assumptions about the existence or nature
of derivatives of the mean with respect to x.

Naive algorithms can only obtain bounds on the range of x values that
may have the minimum expected value by identifying three subsets covering
disjoint x ranges such that the sample mean of the middle set is shown, to
within desired confidence bounds, to be less than the minimum of the mean
of the left set and the mean of the right set. In that case, it can be concluded
that the x value at which the mean is minimal is probably greater than the
least x value in the left set and less than the greatest x value in the right set.

(Additional assumptions are needed in order to set confidence bounds, be-
cause sampling cannot provide confidence bounds on the mean of an unknown
distribution. There is always some chance that, as in a lottery, the mean is
heavily influenced by large outliers that are very unlikely to be observed.
However, the question of which assumptions the confidence test makes when
comparing the means of two sample sets is independent of which assumptions
the algorithm makes about the nature of the mean of the random variable as
a function of its parameter. For simplicity’s sake, I will assume for now that
the random variable is normal at any fixed x value.)

The best deterministic algorithm cannot outperform the best nondeter-
ministic one. Under the assumption of normality (and even under most other
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reasonable assumptions I can think of), the best nondeterministic naive al-
gorithm is one that invokes an oracle to tell which three points should be
sampled in order to obtain the best bounds within a given number of samples.
Sampling more than three points only decreases the power of the test.

1.1 Primary defect of naive minimization: convergence
typically no better than O(n−1/4)

Suppose R(x) is our random variable, so we wish to find x0 such that the
expected value y0 = E(R(x0)) is minimized. As the number of samples n
increases, the accuracy of the x0 estimate obtainable with naive minimization
typically grows quite slowly.

If var(R(x)) has positive lower bound in an interval about x0, then the
sample error of estimates of y0 varies with O( 1

√

n
), where n equals the number

of samples taken. That is the typical best possible performance for sampling
parameterless random variables, so typical best possible performance for pa-
rameterized random variables cannot be better than that.

To detect a significant difference between the means of two sample sets
Y1 and Y2, one needs

O

(

(

sdev(Y1) + sdev(Y2)

|Ȳ1 − Ȳ2|

)2
)

samples, where sdev is the sample standard deviation. If ∂2

∂x2E(R(x))
is defined and positive at x0 (that is, E(R(x)) has roughly parabolic shape
near the minimum) then the minimum distance from x0 necessary to detect a
significant difference in y is proportional to the square root of the difference
in y, yielding a convergence rate for x0est towards the true minimum x0 that
is also the square root of the convergence rate for y. That is,

|x0est − x0| ∈ O(n−
1

4 )

It may be possible for practical deterministic naive algorithms to exactly
match this best big-O performance for x0 and y0, and at worst they can come
very close (exceeding it by a ratio that is O(lnn)).

The x0 convergence for naive algorithms is not very good compared to
what is possible with more aggressive interpolation (O(n−

1

3 ) for nondeter-
ministic quadratic interpolation, with deterministic algorithms presumably
coming quite close to that, and probably better for interpolations of higher
degree). But to repeat, the big-O convergence towards y0 for nondeterminis-
tic naive algorithms is typically ideal, and the big-O performance achievable
by deterministic naive algorithms is either ideal or nearly so.
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The convergence requirements for non-naive, interpolating algorithms
may not be met during the initial stages of a search even if E(R(x)) is
roughly parabolic near the minimum. For that reason, naive optimization
may be useful during the early stages even if other methods are used later.

1.2 Fmin variant (naive algorithm)

• does not require any assumptions about smoothness of E(R(x))

• can achieve typically-minimal O( 1
√

n
) convergence to the minimal y

value under a wide variety of conditions

• may achieve O( 1
√

n
) convergence to the minimal x value if slope is dis-

continuous at x0, but typically does not achieve ideal convergence in
x (see below) – but then, I am not aware of any algorithms that do

achieve best convergence rates in x under typical conditions.

• Very sensitive to poor initial settings – if x0 is the starting position and
δ is the initial step size, then the fmin variant performs quite badly if
it is very expensive to try to distinguish between R(x0− δ), R(x0), and
R(x0 + δ) by sampling.

Fmin loses its extreme simplicity when adapted to random variables with
one parameter. Extra pivot values (comparing only two points at a time
can create problems), bookkeeping, backtracking, an extrapolation phase,
and significance testing for comparisons between points were needed.

2 Alternatives

As Rémi Coulom alludes to in his slideshow on QLR, performing a best fit
to a curve that provides a second-order fit makes it possible to do better than
O(n−1/4) convergence to x0 for variables that have defined nonzero second
derivative in a neighborhood of the minimum.

Greedy minimization is not effective for performing an accurate second-
order fit. An interval just large enough to discern the sign of the slope
between two points is not enough to actually measure the slope with rea-
sonable accuracy – that requires samples over a larger interval. (An actual
greedy algorithm will have sampled some points farther away from the min-
imum during previous steps, but as the rate of progress slows so drastically
as one gets very close to the minimum, the great majority of samplings every
taken will be within a factor of two or three of this greedy minimum distance
– not enough to perform a second-degree fit with sufficient accuracy.)
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2.1 O(n−1/3) convergence to x0 typically possible with
second-order fits

That is, the second-order fit does in fact improve asymptotic convergence
towards x0 as compared to greedy minimization.

2.1.1 Sampling error

Suppose we have sampled the three points {x1 = x2 − δ, x2, x3 = x2 + δ} n
times apiece.

To estimate error, I will assume that var(R(x)) < v for x ∈ [x1, x3], and
that f (3)(x) exists within the interval. Assuming the third derivative and
variance equal these maximum values throughout the entire interval allows
us to set an upper bound on the standard error of the second-degree fit.

R(x) = c3(x− x2)
3 + c2(x− x2)

2 + c1(x− x2) + c0 + V

where V is a random variable such that mean(V ) = 0 and var(V ) = v.
Let y1, y2, and y3 be the three sample means. A quadratic interpolation

of these points yields

x0est = x2 −
δ(y3 − y1)

2(y3 + y1 − 2y2)

The standard error of each of the yi estimates of E(R(xi)) is

(var(R(xi))/n)
1/2 ≤

√

v

n

The standard error of y3 − y1 is
√
2 times that amount. If the standard

error of the denominator is much less than its value; that is, if

y3 + y1 − 2y2 ≫
√

6v

n

then even if E(R(x)) really is a quadratic polynomial (i.e. higher-order
fit error does not exist), we have

standard sampling error of x0est ≃

√

2v
n

4c2δ

So if the variance remains within the same bounds as the interval size is
increased, then larger intervals reduce the impact of sampling error upon our
estimate of x0.
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2.1.2 Higher-order errors from inaccuracy of second-order fit

Next, compute the estimate error attributable to a nonzero third derivative:

E(R(x)) = c3(x− x2)
3 + c2(x− x2)

2 + c1(x− x2) + c0

y1 = −c3δ
3 + c2δ

2 − c1δ + c0

y2 = c0

y3 = c3δ
3 + c2δ

2 + c1δ

y3 − y1 = 2c3δ
3 + 2c1δ

y1 + y3 − 2y2 = 2c2δ
2

Plugging these y values into the quadratic interpolation of

{(x1, y1), (x2, y2), (x3, y3)}
yields the approximation

x0est ≃ x2 −
c3δ

2 + c1
2c2

while in fact

x0 = x2 −
c2 −

√
c22 − 3c1c3
3c3

If the middle of our interval coincides with the actual minimum, that is,
if x2 = x0, then c1 = 0 (the slope is zero at the minimum) and the error in
our second-degree fit equals

higher-order error ≃ |c3|δ2
2c2

This error estimate will be approximately correct if the interval is roughly
centered about the minimum and small enough that second-order error dom-
inates third- and higher-order error terms within that interval – specifically,
provided that

|c1| ≪
c2

2

|c3|
If E(R(x)) is really parabolic at the minimum, then c2 is nonzero there.

Also, c1 is the slope at x2, which should be your previous estimate of the
minimum x value, so if your estimate is good, c1 will be small. Finding a
first interval over which these requirements hold may be tricky, but once they
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do, they will continue to hold during later iterations if your estimates do not
worsen.

2.1.3 Minimizing the sum of sample and higher-order error

These two error sources are independent, so the total standard error is the
square root of the sum of their squares. Minimizing the standard error with
respect to δ yields

δbest =

(

v

4nc32

)
1
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(Aside: since one error level rises with δ while the other falls, a pretty
good approximation of the minimum – one that provides a standard error
no greater than

√
2 times the true minimum – is to set the two error terms

equal, thus minimizing the maximum of the two terms to be squared and then
summed. I don’t do that here, but I do that in the not-quite-working-yet
hopefully-practical version.)

If c3 ≃ 0 near the minimum, then one crudely pessimistic solution is to
let c3 = δc4 in the previous equation and re-solve, yielding

δbest =

(

v

4nc42

)
1
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if this yields a smaller δ value. I won’t talk about that case much, though;
the anomalous case of a zero third derivative at the minimum can be left until
after the ordinary case is in better shape.

Plugging δbest into the total standard error equation yields

standard error ≃ k

c2
(
c3v

n
)
1

3

where

k =
√

2−10/3 + 2−7/3 ≃ 0.546

v ≃ max{var(R(x)) : x ∈ [x0 − δ, x0 + δ]}

c2 =

√

| ∂
2

∂x2
E(R(x0))|

|c3| ≃ max

{

max{| ∂
∂x3E(R(x))|/6 : x ∈ [x0 − δ, x0 + δ]},

1
δ3

√

v
n
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(This is a bit circular, in that δ is a dependent variable. However, if the
limit of the variance in a neighborhood around the minimum is defined and
nonzero, and if the third derivative is nonzero, then it is possible to estimate
these values before δ is known. Extreme accuracy is not critical. If one’s
estimate of both c3 and v is half the correct value, then at worst the total
error is increased by 60%.)
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