
Monte-Carlo Simulation Balancing in Practice

Shih-Chieh Huang1, Rémi Coulom2, and Shun-Shii Lin1

1 National Taiwan Normal University, Dept. of CSIE, Taiwan, R.O.C
2 Université de Lille, CNRS, INRIA, France

Abstract. Simulation balancing is a new technique to tune parameters
of a playout policy for a Monte-Carlo game-playing program. So far,
this algorithm had only been tested in a very artificial setting: it was
limited to 5× 5 and 6× 6 Go, and required a stronger external program
that served as a supervisor. In this paper, the effectiveness of simulation
balancing is demonstrated in a more realistic setting. A state-of-the-art
program, Erica, learned an improved playout policy on the 9× 9 board,
without requiring any external expert to provide position evaluations.
Evaluations were collected by letting the program analyze positions by
itself. The previous version of Erica learned pattern weights with the
minorization-maximization algorithm. Thanks to simulation balancing,
its playing strength was improved from a winning rate of 69% to 78%
against Fuego 0.4.

1 Introduction

The standard approach to writing Go-playing programs is now Monte-Carlo tree
search. This idea was introduced about 20 years ago [1,2], but it is only recently
that it became successful and popular [3,4,5]. The basic idea of Monte-Carlo
algorithms consists in evaluating positions by averaging the outcome of random
continuations.

Monte-Carlo evaluation of a position depends on the choice of a probability
distribution over legal moves. A uniform distribution is the simplest choice, but
produces poor evaluations. It is often better to play good moves with a higher
probability, and bad moves with a lower probability. Playout policy has a lot
of influence on playing strength, and several methods have been proposed to
optimize it.

The simplest approach to policy optimization is trial and error. Some knowl-
edge is implemented in playouts, and its effect on playing strength is estimated
by measuring winning rate against other programs [5,6,7,8]. This approach is
often slow and costly, because measuring winning rate by playing games takes a
lot of time, and a lot of trials fail. It is difficult to guess what change in playout
policy will make the program stronger, because making playouts play better often
causes the Monte-Carlo program to get weaker [9,10].

In order to avoid the difficulties of crafting a playout policy manually, some
authors tried to establish principles for automatic optimization. First, it is possible
to directly optimize numerical parameters with generic stochastic optimization



2 Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin

algorithms such as the cross-entropy method [11]. Such a method may work
for a few parameters, but it still suffers from the very high cost of measuring
strength by playing games against some opponents. This cost may be overcome
by methods such as reinforcement learning [9,10,12], or supervised learning from
good moves collected from game records [13]. Supervised learning from game
records has been very successful, and is used in some top-level Go programs such
as Zen or Crazy Stone.

Among the reinforcement-learning approaches to playout optimization, a
recent method is simulation balancing (SB) [12]. It consists in tuning continuous
parameters of the playout policy in order to match some target evaluation over
a set of positions. This target evaluation is determined by an expert. It may
be obtained by letting a strong program analyze positions deeply, for instance.
Experiments reported by Silver and Tesauro indicate that this method is very
promising: they measured a 200 Elo improvement over previous approaches.

SB experiments were promising, but not completely convincing, because they
were not run in a realistic setting. They were limited to 2× 2 patterns of stone
configurations, on the 5 × 5 and 6 × 6 Go boards. Moreover, they relied on a
much stronger program, Fuego [14], that was used to evaluate positions of the
training database. Anderson [15] failed to replicate the success of SB for 9×9 Go,
but may have had bugs, because he did not improve much over uniform-random
playouts. So it was not clear whether this idea could be applied successfully to a
state-of-the-art program.

This paper presents the successful application of SB to Erica, a state-of-the-
art Monte Carlo program. Experiments were run on the 9×9 board. The training
set was made of positions evaluated by Erica herself. So this learning method
does not require any external expert supervisor. Experiment results demonstrate
that SB made the program stronger than its previous version, where patterns
were trained by minorization-maximization (MM) [13]. Besides playing strength,
another interesting result is that pattern weights computed by MM and SB are
very different from each other. SB patterns may want to play some very bad
shape, that MM evaluates very badly, but that helps to get a correct playout
outcome.

2 Description of Algorithms

This section is a brief reminder of the MM [13] and SB [12] algorithms. More
details about these algorithms can be found in the references.

2.1 Softmax Policy

Both MM and SB optimize linear parameters of a Boltzmann softmax policy.
Such a policy is defined by the probability of choosing action a in state s:

πθ(s, a) =
eφ(s,a)

T θ∑
b e
φ(s,b)T θ

,



Monte-Carlo Simulation Balancing in Practice 3

where φ(s, a) is a vector of binary features, and θ is a vector of feature weights.
The objective of learning algorithms is to find a good value for θ.

2.2 Supervised Learning with MM

MM learns feature weights by supervised learning over a database of sample
moves. It computes maximum-a-posteriori values for θ, given a prior distribution
and sample moves. Typically, the training set is made of moves extracted from
game records of strong players. It may also be made of self-play games if no
expert game records are available.

2.3 Policy-Gradient Simulation Balancing (SB)

SB does not learn from examples of good moves, but from a set of evaluated
positions. This training set may be made of random positions evaluated by a
strong program, or a human expert. Feature weights are trained so that the
average of playout outcomes matches the target evaluation given in the training
set.

The details of SB are given in Algorithm 1. In this algorithm, ψ(s, a) is defined
by:

ψ(s, a) = ∇θ log πθ(s, a) = φ(s, a)−
∑
b

πθ(s, b)φ(s, b) .

V ∗(s1) is the target value of position s1. α is the learning rate of steepest descent.
z is the outcome of one playout, from the point of view of the player who made
action a1 (+1 for a win, -1 for a loss, for instance). si and ai are successive states
and actions in a playout of T moves. M and N are integer parameters of the
algorithm. V and g are multiplied in the update of θ, so they must be evaluated
in two separate loops, in order to obtain two independent estimates.

Algorithm 1 Policy-Gradient Simulation Balancing (SB)

θ ← 0
for all s1 ∈ training set do
V ← 0
for i = 1 to M do

simulate(s1, a1, . . . , sT , aT ; z) using πθ
V ← V + z

M

end for
g ← 0
for j = 1 to N do

simulate(s1, a1, . . . , sT , aT ; z) using πθ
g ← g + z

NT

∑T
t=1 ψ(st, at)

end for
θ ← θ + α(V ∗(s1)− V )g

end for



4 Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin

3 Experiments

Experiments were run with the Go-playing program Erica. The SB algorithm
was applied repeatedly with different parameter values, in order to measure their
effects. Playing strength was estimated with matches against Fuego. The result
of applying SB is compared to MM, both in terms of playing strength and feature
weights.

3.1 Erica

Erica is developed by the first author as a PhD research. The development of
Erica is supervised by the second author and project-supported by the third
author. In 2009, Erica won the 3rd and 2nd position in 9× 9 and 19× 19 events
respectively in the TAAI Computer Go Tournament in Taiwan and scored the
6th position in the 3rd UEC Cup in Japan. In Erica, there are several standard
MCTS implementations and enhancements, such as UCT [16], RAVE [10], and
progressive bias [17]. MM [13] is used to compute the patterns in both progressive
bias and the playout. Not only the light-weight features, but also the heavy-weight
features are included in progressive bias, such as larger patterns and ladder.

3.2 Playout Features

The playouts of Erica are based on 3 × 3 stone patterns, augmented by the
atari status of the four directly-connected points. These patterns are centered on
the move to be played. By taking rotations, symmetries, and move legality into
consideration, there is a total of 2,051 such patterns.

In addition to stone patterns, Erica uses 7 features related to the previous
move:

1. Contiguous to the previous move. Active if the candidate move is among the
8 neighboring points of the previous move. Also active for all features 2–7.

2. Save the string in new atari by capturing. The candidate move that is able
to save the string in new atari by capturing has this feature.

3. Same as Feature 2, which is also self-atari. If the candidate move has Feature 2
but is also a self-atari, then instead it has Feature 3 (Fig. 1).

4. Save the string in new atari by extension. The candidate move that is able
to save the string in new atari by extension has this feature.

5. Same as Feature 4, which is also self-atari.
6. Solve a new ko by capturing. If there is a new ko, then the candidate move

that is able to solve the ko by capturing any one of the neighboring strings
has this feature.

7. 2-point semeai. If the previous move reduces the liberties of a string to only
two, then the candidate move that is able to kill its neighboring string by
giving atari has this feature. Fig. 1 gives an example. This feature deals with
the most basic type of semeai.



Monte-Carlo Simulation Balancing in Practice 5

3 2

6

7

Fig. 1. Examples of Features 2, 3, 6, and 7. Previous move is marked with a dot.

3.3 Experiment Setting

The performance of MM and SB was measured by the winning rate of Erica
against Fuego 0.4 with 3,000 playouts per move for both programs. For reference,
performance of the uniform random playout policy and the MM policy are shown
in Table 1.

Table 1. Result against Fuego 0.4, 1000 games, 9× 9, 3k playouts/move

Playout Policy Winning Rate

Uniform Random 6.8%± 0.8
MM 68.9%± 1.4

9x9 MM 40.9%± 1.6

For fairness, both the training of MM and SB were performed with the
same features described above. The training of MM was performed on 1,400,000
positions, chosen from 150,000 19 × 19 game records by strong players. This
games were KGS games collected from the web site of Kombilo [18], combined
with professional games collected from the web2go web site [19].

The production of the training data and the training process of SB were ac-
complished through Erica without any external program. The training positions
were randomly selected from the games self-played by Erica with 3,000 playouts
per move. Then Erica was directly used to evaluate these positions.

These 9x9 positions were also used to measure the performance of MM in the
situation equivalent to that of SB. Same 5k positions, that were served as the
training set of SB, were trained on MM to compute the patterns. The strength
of these patterns was measured and shown in Table 1 as 9x9 MM.

3.4 Influence of Algorithm Meta-parameters

SB has a few meta-parameters that need tuning. For the gradient-descent part, it
is necessary to choose M , N , and α. Two other parameters define how the training



6 Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin

set was built: number of positions, and number of playouts for each position
evaluation. Table 2 summarizes experiment results with these parameters.

Since the algorithm is random, it would have been better to replicate each
experiment more than once, in order to measure the effect of randomness. Because
of limited computer resources, we preferred trying many parameter values rather
than replicating experiments with the same parameters.

In the original algorithm, the simulations of outcome 0 are ignored when N
simulations are performed to accumulate the gradient. The algorithm can be
safely modified to use outcome -1/1 and replace z with (z-b), where b is the
average reward, to make the 0/1 and -1/1 cases equivalent [20]. The results of
the 1st and 4th columns in Table 2 show that the learning speed of outcome -1/1
is much faster than 0/1, so that the winning rate of outcome -1/1 of iteration 20
(69.2%) is even higher than that of outcome 0/1 of iteration 100 (63.9%).

A critical issue of the training set is the quality of its evaluation. Better
evaluation produces better learning results is conspicuously demonstrated by
that 100k evaluation (4th column in Table 2) performed much better in average
than 10k evaluation(3rd column).

The SB algorithm was designed to reduce the mean squared error (MSE)
of the whole training set by stochastic gradient-descent. As a result, the MSE
should gradually decrease if the training is performed on the same training set
ever and again. Running the SB algorithm through the whole training set once
is defined as an Iteration. Although the MSE reduces gradually (Fig. 2), the
playing strength will increase in the beginning and finally stop to increase after
certain iterations, even start to decline.

0.01

0.015

0.02

0.025

0.03

0.035

0 20 40 60 80 100

MSE

Fig. 2. Mean squared error as a function of iteration number. M = N = 500,
α = 10, training set has 5k positions evaluated with 100k playouts. Error was
measured with 1000 playouts for every position of the training set.



Monte-Carlo Simulation Balancing in Practice 7

Table 2. Experiment results. Winning rate was measured with 1000 games
against Fuego 0.4, with 3,000 playouts per move. 95% confidence is ±1.6 when
the winning rate is close to 50%, and ±1.3 when it is close to 80%.

Positions 5k 5k 5k 5k 5k 10k
Playouts 100k 100k 10k 100k 100k 100k

M 500 100 500 500 100 500
N 500 100 500 500 100 500
α 10 10 10 10 1 10

Outcome 0/1 -1/1 -1/1 -1/1 -1/1 -1/1

20 51.5% 69.2% 65.7% 69.3% 51.8% 71.2%
40 57.6% 75.5% 68.5% 75.4% 57.2% 76.0%
60 58.1% 70.1% 70.8% 77.9% 57.2% 74.0%
80 61.3% 78.2% 72.2% 76.8% 63.7% 76.9%

100 63.9% 76.2% 74.0% 73.5% 65.4% 76.0%
200 60.8% 77.4% 71.6% 76.3% 70.1% 74.1%
300 61.9% 73.9% 75.0% 73.2%
500 75.4%
700 74.8%
900 74.3%

1100 76.2%

Iteration Winning Rate

3.5 Comparison between MM and SB Feature Weights

For this comparisons, SB values that scored 77.9% against Fuego 0.4 were used
(60 iterations, fourth column of Table 2). Table 3 shows the γ-values of local
features (γi = eθi is a factor proportional to the probability that feature i is
played). Table 4 shows some interesting 3× 3 patterns (top 10, bottom 10, top
10 without atari, and most different 10 patterns).

Table 3. Comparison of local features, between MM and SB

Feature Description MM γ SB γ

1 Contiguous 11.12 7.43
2 Save new atari by capturing 32.37 151.04
3 2 + self-atari 0.24 0.53
4 Save new atari by extending 6.71 23.11
5 4 + self-atari 0.05 0.02
6 Capture after ko 0.65 6.37
7 2-point semeai 32.07 141.80

Local features (Table 3) show that SB plays tactical moves such as captures
and extensions in a way that is much more deterministic than MM. A possible
interpretation is that strong players may sometimes find subtle alternatives
to those tactical moves, such as playing a move in sente elsewhere. But those



8 Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin

Table 4. 3× 3 patterns. A triangle indicates a stone in atari. Black to move.

SB rank 1 2 3 4 5 6 7 8 9 10
MM rank 816 1029 8 1058 1055 403 441 431 960 555

SB γ 47.63 30.85 29.33 29.26 25.53 25.51 25.24 15.72 15.03 14.64
MM γ 1.55 0.95 16.98 0.88 0.89 3.34 3.10 3.15 1.10 2.50

SB rank 1371 951 1870 1519 1941 148 546 3 1486 1180
MM rank 1 2 3 4 5 6 7 8 9 10

SB γ 0.92 1.01 0.43 0.85 0.24 2.35 1.13 29.33 0.86 0.98
MM γ 112.30 52.78 45.68 39.43 30.41 25.52 24.16 16.98 14.66 14.34

SB rank 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999
MM rank 1982 1573 1734 2008 1762 1953 1907 1999 1971 1751

SB γ 0.02 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.06
MM γ 0.00 0.21 0.08 0.00 0.07 0.01 0.01 0.00 0.00 0.07

SB rank 2005 1896 1929 251 1910 1818 1874 1969 1915 2001
MM rank 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999

SB γ 0.03 0.36 0.28 1.60 0.34 0.53 0.42 0.16 0.33 0.04
MM γ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SB rank 11 13 14 15 16 19 25 27 28 32
MM rank 1847 1770 1775 1808 1509 420 900 1857 425 1482

SB γ 14.43 14.15 12.36 12.33 11.71 9.82 8.23 8.11 7.93 7.29
MM γ 0.03 0.07 0.06 0.04 0.28 3.25 1.27 0.03 3.21 0.29

SB rank 1317 702 815 497 1448 1759 397 1080 1466 537
MM rank 15 16 18 21 23 25 26 28 30 31

SB γ 0.94 1.06 1.03 1.16 0.88 0.62 1.27 0.99 0.87 1.14
MM γ 13.04 12.84 12.53 11.39 11.00 10.90 10.79 10.62 10.51 10.44

SB rank 34 90 40 119 11 27 61 145 72 15
MM rank 1975 1976 1904 1978 1847 1857 1889 1965 1868 1808

SB γ 6.85 3.38 5.90 2.72 14.43 8.11 4.73 2.36 4.15 12.33
MM γ 0.00 0.00 0.01 0.00 0.03 0.03 0.02 0.00 0.02 0.04

SB rank 1941 1870 1856 1898 1985 1759 1928 1872 1881 1737
MM rank 5 3 33 109 249 25 200 183 201 67

SB γ 0.24 0.43 0.45 0.35 0.10 0.62 0.28 0.42 0.41 0.65
MM γ 30.41 45.68 10.38 7.28 4.64 10.90 5.23 5.49 5.21 8.45



Monte-Carlo Simulation Balancing in Practice 9

Elo-1000 1000

MM
SB

Fig. 3. 3× 3 pattern density by Elo rating (400θ/ log(10)).

considerations are far beyond what playouts can understand, so more deterministic
captures and extensions may produce better Monte-Carlo evaluations.

Pattern weights obtained by SB are very different from those obtained by MM.
Figure 3 shows that SB has a very high density of neutral patterns. Observing
individual patterns on Table 4 shows that patterns are sometimes ranked in a
very different order. Top patterns (first two lines) are all captures and extensions.
Many of the top MM patterns are ko-fight patterns. Again, this is because those
happen often in games by strong humans. Resolving ko fight is beyond the scope
of this playout policy, so it is not likely that ko-fight patterns help the quality
of playouts. Remarkably, all the best SB patterns, as well as all the worst SB
patterns (line 3) are border patterns. That may be because the border is where
most crucial life-and-death problems occur.

The bottom part of Table 4 shows the strangest differences between MM and
SB. Lines 5 and 6 are top patterns without atari, and lines 7 and 8 are patterns
with the highest difference in pattern rank. It is very difficult to find convincing
interpretations for most of them. Maybe the first pattern of line 7 (with SB rank
34) allows to evaluate a dead 2 × 2 eye. After this move, White will probably
reply by a nakade, thus evaluating this eye correctly. Patterns with SB ranks 40,
119, and 15 offer White a deserved eye. These are speculative interpretations,
but they show the general idea: playing such ugly shapes may help playouts to
evaluate life-and-death correctly.

3.6 Against GNU Go on 9 × 9 Board

The same patterns of SB in Section 3.5 were also used to play against GNU Go,
which has been the most popular comparative object in computer Go for the past



10 Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin

years. For having more evident statistical observations, Erica was set to play
with 300 playouts per move to keep the winning rate as close to 50% as possible.
The results presented in Table 5 indicate that SB still performs better, although
its leading over MM is not as significant as in the previous experiments. The
reason for this result is maybe that progressive bias still has dominant influence
to guide the UCT search within 300 playouts. Also, it is a usual observation that
improvement against GNU Go is often much less than improvement against
other Monte-Carlo programs.

Table 5. Result against GNU Go 3.8 Level 10, 1000 games, 9 × 9, 300 play-
outs/move

Playout Policy Winning Rate

Uniform Random 22.1%± 1.3
MM 59.3%± 1.6
SB 62.6%± 1.5

3.7 Playing Strength on 19 × 19 Board

The comparison between MM and SB was also carried out on 19× 19 board by
playing against GNU Go 3.8 Level 0 with 1,000 playouts per move. Although
the foregoing experiments confirms that SB surpasses MM on 9× 9 board under
almost every setting of M , N , and α, MM is still more effective on 19× 19 board.
In Table 5, the original SB scored only 33.2% with patterns which winning rate
was 77.9% on 9 × 9 board. Even the γ-values of all local features of SB are
replaced by that of MM (MM and SB Hybrid), the playing strength still does not
improve at all (33.4%). Nonetheless, the winning rate of SB raises to 41.2% if the
γ-value of Feature 1 is manually multiplied by 4.46 (= (19× 19)/(9× 9)), which
was empirically obtained from the experimental results. This clearly points out
that patterns computed by SB on 9× 9 board are far from optimal on 19× 19
board.

Table 6. Result against GNU Go 3.8 Level 0, 500 games, 19× 19, 1000 play-
outs/move

Playout Policy Winning Rate

Uniform Random 8.2%± 1.2
SB 33.2%± 2.1
MM and SB Hybrid 33.4%± 2.1
SB(4.46) 41.2%± 2.2
MM 42.0%± 2.2



Monte-Carlo Simulation Balancing in Practice 11

4 Conclusion

Experiments presented in this paper demonstrate the good performance of SB
on the 9× 9 board. This is an important result for practitioners of Monte-Carlo
tree search, because previous results with this algorithm were limited to more
artificial conditions.

Results also demonstrate that SB gives high weights to some patterns in very
bad shape. This remains to be tested, but it indicates that SB pattern weights
may not be appropriate for progressive bias. Also, learning opening patterns on
the 19× 19 board seems to be out of reach of SB, so MM is likely to remain the
learning algorithm of choice for progressive bias.

The results of experiments also indicate that SB has the potential to perform
even better. Many improvements seem possible.

First, steepest descent is an extremely inefficient algorithm for stochastic
function optimization. More clever algorithms may provide convergence that is
order of magnitude faster [21], without having to choose meta-parameters.

Second, it would be possible to improve the training set. Using many more
positions would probably reduce risks of overfitting, and may produce better
pattern weights. It may also be a good idea to try to improve the quality of
evaluations by cross-checking values with a variety of different programs, or by
incorporating positions evaluated by a human expert.

Acknowledgments

We thank David Silver for his comments and encouragements. We are also
grateful to Lin Chung-Hsiung for kindly providing access to the game database of
the web2go web site. Hardware was provided by project NSC98-2221-E-003-013
from National Science Council, R.O.C. This work was supported in part by the
IST Programme of the European Community, under the PASCAL2 Network
of Excellence, IST-2007-216886. This work was supported in part by Ministry
of Higher Education and Research, Nord-Pas de Calais Regional Council and
FEDER through the “CPER 2007–2013”. This publication only reflects the
authors’ views.

References

1. Abramson, B.: Expected-outcome: A general model of static evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 12(2) (February 1990)
182–193

2. Brügmann, B.: Monte Carlo Go (1993) Unpublished technical report.
3. Bouzy, B., Helmstetter, B.: Monte Carlo Go developments. In van den Herik, H.J.,

Iida, H., Heinz, E.A., eds.: Proceedings of the 10th Advances in Computer Games
Conference, Graz (2003)

4. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In van den Herik, H.J., Ciancarini, P., Donkers, H.J., eds.: Proceedings of the 5th
International Conference on Computer and Games. Volume 4630 of Lecture Notes
in Computer Science., Turin, Italy, Springer (June 2006) 72–83



12 Shih-Chieh Huang, Rémi Coulom, and Shun-Shii Lin

5. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns
in Monte-Carlo Go. Technical Report RR-6062, INRIA (2006)

6. Bouzy, B.: Associating domain-dependent knowledge and Monte-Carlo approaches
within a Go program. Information Sciences, Heuristic Search and Computer Game
Playing IV 175(4) (November 2005) 247–257

7. Chen, K.H., Zhang, P.: Monte-Carlo Go with knowledge-guided simulations. ICGA
Journal 31(2) (June 2008) 67–76

8. Chaslot, G., Fiter, C., Hoock, J.B., Rimmel, A., Teytaud, O.: Adding expert
knowledge and exploration in Monte-Carlo tree search. In: Proceedings of the
Twelfth International Advances in Computer Games Conference, Pamplona, Spain
(May 2009)

9. Bouzy, B., Chaslot, G.: Monte-Carlo Go reinforcement learning experiments. In
Kendall, G., Louis, S., eds.: 2006 IEEE Symposium on Computational Intelligence
and Games, Reno, USA (May 2006) 187–194

10. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceedings
of the 24th International Conference on Machine Learning, Corvallis Oregon USA
(2007) 273–280

11. Chaslot, G.M.J.B., Winands, M.H.M., Szita, I., van den Herik, H.J.: Cross-entropy
for Monte-Carlo tree search. ICGA Journal 31(3) (September 2008) 145–156

12. Silver, D., Tesauro, G.: Monte-Carlo simulation balancing. In Bottou, L., Littman,
M., eds.: Proceedings of the 26th International Conference on Machine Learning,
Montreal, Canada, Omnipress (June 2009) 945–952

13. Coulom, R.: Computing Elo ratings of move patterns in the game of Go. ICGA
Journal 30(4) (December 2007) 198–208

14. Enzenberger, M., Muller, M.: Fuego—an open-source framework for board games
and Go engine based on Monte-Carlo tree search. Technical Report TR 09-08,
University of Alberta, Edmonton, Alberta, Canada (2009)

15. Anderson, D.A.: Monte Carlo search in games. Technical report, Worcester
Polytechnic Institute (2009)

16. Kocsis, L., Szepesvári, C.: Bandit-based Monte-Carlo planning. In Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M., eds.: Proceedings of the 15th European Conference
on Machine Learning, Berlin, Germany (2006)

17. Chaslot, G., Winands, M., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik, H.J.:
Progressive strategies for monte-carlo tree search. In Wang, P., ed.: Proceedings
of the 10th Joint Conference on Information Sciences, Salt Lake City, USA (2007)
655–661

18. Goertz, U., Shubert, W.: Game records in SGF format. http://www.u-go.net/

gamerecords/ (2007)
19. Chung-Hsiung, L.: web2go web site. http://www.web2go.idv.tw/gopro/ (2009)
20. Silver, D.: Message to the computer-go mailing list. http://www.mail-archive.

com/computer-go@computer-go.org/msg11260.html (2009)
21. Schraudolph, N.N.: Local gain adaptation in stochastic gradient descent. In:

Proceedings of the 9th International Conference on Artificial Neural Networks,
London, IEEE (1999)

http://www.u-go.net/gamerecords/
http://www.u-go.net/gamerecords/
http://www.web2go.idv.tw/gopro/
http://www.mail-archive.com/computer-go@computer-go.org/msg11260.html
http://www.mail-archive.com/computer-go@computer-go.org/msg11260.html

