
1

Computing Elo Ratings of Move Patterns in the Game of Go

Rémi Coulom

Universit́e Charles de Gaulle, INRIA SEQUEL, CNRS GRAPPA, Lille, France

ABSTRACT

Move patterns are an essential method to incorporate domainknowledge into Go-playing programs.
This paper presents a new Bayesian technique for supervisedlearning of such patterns from game
records, based on a generalization of Elo ratings. Each sample move in the training data is considered
as a victory of a team of pattern features. Elo ratings of individual pattern features are computed from
these victories, and can be used in previously unseen positions to compute a probability distribution
over legal moves. In this approach, several pattern features may be combined, without an exponential
cost in the number of features. Despite a very small number oftraining games (652), this algorithm
outperforms most previous pattern-learning algorithms, both in terms of mean log-evidence (−2.69),
and prediction rate (34.9%). A 19×19 Monte-Carlo program improved with these patterns reached
the level of the strongest classical programs.

1. INTRODUCTION

Many Go-playing programs use domain knowledge encoded intopatterns. The kinds of patterns considered in
this paper are heuristic move patterns. These are general rules, such as “it is bad to play in the corner of the
board”, “it is good to prevent connection of two opponent strings”, “don’t fill-up your own eyes”, or “when in
atari, extend”. Such knowledge may be used to prune a search tree, order moves, or improve random simulations
in Monte-Carlo programs (Bouzy, 2005; Gellyet al., 2006).

Move patterns may be built by hand, or generated automatically. A popular approach to automatically generate
patterns is supervised learning (Arakiet al., 2007; Bouzy and Chaslot, 2005; Dahl, 1999; Enderton, 1991;de
Groot, 2005; Marchand, 2007; Stern, Herbrich, and Graepel,2006; Stoutamire, 1991; van der Werfet al., 2003):
frequent patterns are extracted and evaluated from game records of strong players. In this approach, expert
knowledge is used to produce a relevant encoding of patternsand pattern features, and a machine-learning algo-
rithm evaluates them. The advantage of automatic pattern learning over hand-made patterns is that thousands of
patterns may be generated and evaluated with little effort,and little domain expertise.

This paper presents a new supervised pattern-learning algorithm, based on the Bradley-Terry model. The Bradley-
Terry model is a pairwise comparison model based on the logitlink function, and is the theoretical basis of
the Elo rating system (Elo, 1978). The principle of Elo ratings, as applied to chess, is that each player gets a
numerical strength estimation, computed from the observation of past game results. From the ratings of players,
it is possible to estimate a probability distribution over the outcome of future games. The same principle can be
applied to move patterns: each sample move in the training database can be considered as a victory of one pattern
over the others, and can be used to compute pattern ratings. When faced with a new position, the Elo ratings of
patterns can be used to compute a probability distribution over all legal moves.

1.1 Related Work

This algorithm based on the Bradley-Terry model is very similar in spirit to some recent related works, but
provides significant differences and improvements.

The simplest approach to pattern learning consists in measuring the frequency of play of each pattern (Bouzy and
Chaslot, 2005; de Groot, 2005). The number of times a patternis played is divided by the number of times it is

2 ICGA Journal January, 2007

present. This way, the strongest patterns get a higher rating because they do not stay long without being played.
A major weakness of this approach is that, when a move is played, the strengths of competing patterns are not
taken into consideration. In the Elo-rating analogy, this would mean estimating the strength of a player with its
winning rate, regardless of the strength of opponents. By taking the strength of opponents into account, methods
based on the Elo rating system can compute more accurate pattern strengths.

Sternet al. (2006) address the problem of taking the strength of opponents into account by using a model ex-
tremely similar to Elo ratings. With this model, they can compute high-quality probability distributions over
legal moves. A weakness of their approach, however, is that they are restricted to using only a few move features,
because the number of patterns to evaluate would grow exponentially with the number of features.

In order to solve the problem of combining move features, Araki et al. (2007) propose a method based on
maximum-entropy classification. A major drawback of their approach is its very high computational cost, which
forced them to learn on a restricted subset of moves, while still taking 8.75 days of computation to learn. Also,
it is not clear whether their method would provide a good probability distribution over moves, because, like the
frequency-based approach, it doesn’t take the strength of opponent patterns into account.

A generalized Bradley-Terry model, when combined with the minorization-maximization algorithm to compute
its maximuma posteriori, addresses all the shortcomings of previous approaches, byproviding the algorithmic
simplicity and efficiency of frequency-based pattern evaluation, with the power and theoretical soundness of
methods based on Bayesian inference and maximum entropy.

1.2 Paper Outline

This paper is organized as follows: Section 2 explains the details of the theory of minorization-maximization
and generalized Bradley-Terry models, Section 3 presents experimental results of pattern learning, and Section 4
describes how these patterns were applied to improve a Monte-Carlo program.

2. MINORIZATION-MAXIMIZATION AND GENERALIZED BRADLEY-TERRY MODELS

This section briefly explains, independently of the problemof learning patterns in the game of Go, the theory of
minorization-maximization and generalized Bradley-Terry models. It is based on Hunter’s paper (Hunter, 2004),
where interested readers will find more generalizations of this model, with all the convergence proofs, references,
and mathematical details.

2.1 Elo Ratings and the Bradley-Terry Model

The Bradley-Terry model allows to make predictions about the outcome of competitions between individuals. Its
principle consists in evaluating the strength of each individual i by a positive numerical valueγi . The strongeri,
the higherγi . Predictions are made according to a formula that estimatesthe probability thati beatsj:

P(i beatsj) =
γi

γi + γ j
.

The Elo rating of individuali is defined byr i = 400log10(γi), that is to sayγi = 10
ri

400.

2.2 Some Generalizations of the Bradley-Terry Model

The Bradley-Terry model may be generalized to handle competitions involving more than two individuals. Forn
players:

∀i ∈ {1, . . . ,n}, P(i wins) =
γi

γ1 + γ2 + . . .+ γn
.

3

Another interesting generalization consists in considering not only individuals, but teams. In this generalization,
theγ of a team is estimated as the product of theγ ’s of its members. For instance:

P(1-2-3 wins against 4-2 and 1-5-6-7) =
γ1γ2γ3

γ1γ2γ3 + γ4γ2 + γ1γ5γ6γ7
.

Note that the sameγ may appear in more than one team. But it may not appear more than once in a team.

2.3 Relevance of Bradley-Terry Models

The choice of a Bradley-Terry model makes strong assumptions about what is being modeled, and may not
be appropriate in every situation. First, a Bradley-Terry model cannot take into consideration situations where
individual 1 beats individual 2 consistently, individual 2beats individual 3 consistently, and individual 3 beats
individual 1 consistently. The strengths are on a one-dimensional scale, which does not allow such cycles. Also,
the generalization to teams assumes that the strength of a team is the sum (in terms of Elo ratings) of the strengths
of its members. This is also a very strong assumption that maynot be correct all the time.

2.4 Bayesian Inference

Bradley-Terry models, as described in the previous sections, provide a probability distribution over the outcomes
of future competitions, given the strength of individuals that participate. Most of the time the exact value of
parametersγi are unknown, and have to be estimated from the outcome of pastcompetitions. This estimation can
be done with Bayesian inference.

With~γ, the vector of parameters, and~R, past results, Bayes formula is:

P(~γ|~R) =
P(~R|~γ)P(~γ)

P(~R)
.

It gives a posterior distribution over~γ, from P(~R|~γ), that is to say the Bradley-Terry model described in the
previous sections,P(~γ), a prior distribution over parameters, andP(~R), a normalizing constant. Parameters~γ
may be estimated by finding~γ∗ that maximizesP(~γ|~R).

This optimization can be made more convenient by choosing a prior that has the same form as the Bradley-Terry
model itself. That is to say, virtual results~R′ will serve as a prior:P(~γ) = P(~R′|~γ). This way, the estimation of
parameters of the model will consist in maximizingP(~R,~R′|~γ).

2.5 A Minorization-Maximization Algorithm

Minorization-Maximization is a simple algorithm to compute the maximuma posterioriof the Bradley-Terry
model.

2.5.1 Notations.

γ1, . . . ,γn are the strength parameters ofn individuals.N resultsR1, . . . ,RN of independent competitions between
these individuals are known. These competitions are of the most general type, as described in Section 2.2. The
probability of one competition result may be written as

P(Rj) =
Ai j γi +Bi j

Ci j γi +Di j
,

whereAi j , Bi j , Ci j , andDi j are factors that do not depend onγi . With this notation, eachP(Rj) can be written in
n different ways, each time as a function of one particularγi . For instance, the example of Section 2.2 would be

R1 = 1-2-3 wins against 4-2 and 1-5-6-7,

4 ICGA Journal January, 2007

L

γ

b

(a) Initial guess.

L

γ

b

(b) Minorization.

L

γ

b

(c) Maximization.

Figure 1: Minorization-maximization.

and its probability

P(R1) =
γ2γ3 · γ1

(γ2γ3 + γ5γ6γ7) · γ1 + γ4γ2
,

soA11 = γ2γ3, B11 = 0,C11 = γ2γ3 + γ5γ6γ7, D11 = γ4γ2. Similarly A21 = γ3γ1, A31 = γ2γ1, A41 = 0, etc.

E j is defined asE j = Ci j γi +Di j , andWi = |{ j|Ai j 6= 0}| is the number of wins of individuali.

The objective is to maximize:

L =
N

∏
j=1

P(Rj)

2.5.2 Derivation of the Minorization-Maximization Formula.

(Readers who do not wish to understand all the details may safely skip to the formula)

Minorization-maximization is an iterative algorithm to maximizeL. Its principle is illustrated on Figure 1. Start-
ing from an initial guess~γ0 for ~γ, a functionm is built, thatminorizes Lat~γ0. That is to say,m(~γ0) = L(~γ0),
and, for all~γ, m(~γ) ≤ L(~γ). The maximum~γ1 of m is then computed. Thanks to the minorization property,~γ1

is an improvement over~γ0. The trick is to buildm so that its maximum can be computed in closed form. This
optimization algorithm is often much more efficient than traditional gradient-ascent methods.

L =
N

∏
j=1

Ai j γi +Bi j

Ci j γi +Di j

is the function to be maximized.L can be considered as a function ofγi , and its logarithm is:

logL(γi) =
N

∑
j=1

log(Ai j γi +Bi j)−
N

∑
j=1

log(Ci j γi +Di j) .

Since eitherBi j = 0 (ie player i is in the winning team), orAi j = 0 (ie player i is not in the winning team), the
first term can be written:

N

∑
j=1

log(Ai j γi +Bi j) = ∑
j,Ai j =0

log(Bi j)+ ∑
j,Bi j =0

(logAi j + logγi)

Terms that do not depend onγi can be removed, and the function to be maximized becomes:

f (x) = Wi logx−
N

∑
j=1

log(Ci j x+Di j) .

The logarithms in the right-hand part may be minorized by their tangent atx = γi , as shown on Figure 2. After
removing the terms that do not depend onx, the minorizing function to be maximized becomes

m(x) = Wi logx−
N

∑
j=1

Ci j x

Ci j γi +Di j
.

Its derivative is

m′(x) =
Wi

x
−

N

∑
j=1

Ci j

E j
.

5

-1

0

1

2

3

0.4 0.8 1.2 1.6 2

+

− logx
1−x/x0− logx0

Figure 2: Minorization of− logx atx0 = 0.5 by its tangent.

The maximum ofm(x) can be found by solvingm′(x) = 0:

x =
Wi

∑N
j=1

Ci j
E j

.

2.5.3 Minorization-Maximization Formula.

So, minorization-maximization consists in iteratively updating one parameterγi according to this formula:

γi ←
Wi

∑N
j=1

Ci j
E j

.

If all the parameters are initialized to 1, and the number of participants in each competition is the same, the first
iteration of minorization-maximization computes the winning frequency of each individual. So, in some way,
minorization-maximization provides a Bayesian justification of frequency-based pattern evaluation. But running
more than one iteration improves parameters further.

When players have different strengths,Ci j indicates the strength of team mates ofi during competitionj, andE j

is the overall strength of participants. With the minorization-maximization formula, a win counts all the more as
team mates are weak, and opposition is strong.

2.5.4 Batch Updates.

The minorization-maximization formula describes how to update just oneγi . It is possible to iteratively update
all theγi one by one, but it may be inefficient. Another possibility is to perform batch updates. A set of mutually
exclusiveγi ’s may be updated in one single pass over the data. Mutually exclusive means that they cannot be
members of the same team. The batch-update approach still has good convergence properties (Hunter, 2004),
and offers the opportunity to re-use computations. In particular, 1/E j need not be computed more than once in a
batch.

3. PATTERN-LEARNING EXPERIMENTS IN THE GAME OF GO

A generalized Bradley-Terry model can be applied to supervised learning of Go patterns, by considering that
each sample move is a competition, whose winner is the move inquestion, and losers are the other legal moves.

6 ICGA Journal January, 2007

Each move can be considered as a “team” of features, thus allowing to combine a large number of such features
without a very high cost.

3.1 Data

Learning was performed on game records played by strong players on KGS. These game records were down-
loaded from the web site of Kombilo (Goertz and Shubert, 2007). The training set was made of the 652 games
with no handicap of January, 2006 (131,939 moves). The test set was made of the 551 games with no handicap of
February, 2006 (115,832 moves). The level of play in these games may not be as high as the professional records
used in previous research on pattern learning, but they havethe advantage of being publicly available for free,
and their level is more than high enough for the current levelof Go-playing programs.

3.2 Features

The learning algorithm used 8 tactical features: pass, capture, extension, self-atari, atari, distance to border,
distance to the previous move, and distance to the move before the previous move. Some of these features may
take more than one value, as explained in Table 1.

The 9th feature was Monte-Carlo owner. It was computed by running 63 random games from the current position.
For each point of the board, the number of final positions owned by the player to move was counted.

The 10th feature was shape patterns. Nested circles of radius 3 to 10 according to the distance defined in Table 1
are considered, similarly to Sternet al. (2006). 16,780 shapes were harvested from the training set,by keeping
those that appear at least 625 times.

Each value that these features can take is considered as a separate “individual”, and is associated to one strength
parameterγi . Since values within one feature are mutually exclusive, they were all updated together within one
iteration of the minorization-maximization algorithm.

3.3 Prior

The prior was set by adding, for eachγi , one virtual win, and one virtual loss, against a virtual opponent whose
γ is 1. In the Elo-rating scale, this produces a symmetric probability distribution, with mean 0 and standard
deviation 302.

3.4 Results

Table 1 lists the values ofγ for all non-shape features.

Figure 3 plots the mean log-evidence per stage of the game, against the data of Stern, Herbrich, and Graepel
(Sternet al., 2006). This mean log-evidence is the mean logarithm of the probability of selecting the target move
according to the Bradley-Terry model, measured over the test set. The overall mean log-evidence is -2.69, which
corresponds to an average probability of 1/14.7. Uniform probability gives a mean log-evidence of -5.49, which
corresponds to an average probability of 1/243.

Figure 4 is a plot of the cumulative distribution of the probability of finding the target move at a given rank,
measured over the test set, and compared with other authors.

3.5 Discussion

The prediction rate obtained with minorization-maximization and the Bradley-Terry model is the best among
those published in academic papers. de Groot (2005) claims a42% prediction rate, but his method for measure-
ment is not very clear, and some recent manual testing of his program indicate that its prediction rate may be

7

Feature Level γ Description
Pass 1 0.17 Previous move is not a pass

2 24.37 Previous move is a pass

Capture 1 30.68 String contiguous to new string in atari
2 0.53 Re-capture previous move
3 2.88 Prevent connection to previous move
4 3.43 String not in a ladder
5 0.30 String in a ladder

Extension 1 11.37 New atari, not in a ladder
2 0.70 New atari, in a ladder

Self-atari 1 0.06

Atari 1 1.58 Ladder atari
2 10.24 Atari when there is a ko
3 1.70 Other atari

Distance to border 1 0.89
2 1.49
3 1.75
4 1.28

Distance to 2 4.32 d(δx,δy) = |δx|+ |δy|+max(|δx|, |δy|)
previous move 3 2.84

4 2.22
5 1.58

.
16 0.33
≥ 17 0.21

Distance to 2 3.08
the move before 3 2.38
the previous move 4 2.27

5 1.68
.
16 0.66
≥ 17 0.70

MC Owner 1 0.04 0−7
2 1.02 8−15
3 2.41 16−23
4 1.41 24−31
5 0.72 32−39
6 0.65 40−47
7 0.68 48−55
8 0.13 56−63

Table 1: Model parameters for non-shape features. Each feature describes a property of a candidate move in the
current position. A feature might either be absent, or take one of the values indicated in the Level column. Each
move in a Go position may combine several features, in which case itsγ value is the product of theγ ’s of those
features. For instance if a move is an extension of a new string in atari (γ = 11.37), at distance two from the
border (γ = 1.49), distance 3 from the previous move (γ = 2.84), distance 2 to the move before (γ = 3.08), on
undecided territory with MC Owner = 4 (γ = 1.41), then itsγ is 11.37×1.49×2.84×3.08×1.41, that is to say
about 209.

8 ICGA Journal January, 2007

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

0 50 100 150 200 250 300

Minorization-Maximization

rs
rs rs

rs
rs

rs
rs

rs
rs

rs
rs

rs

Stern, Herbrich, and Graepel (2006)

+

+

+

+

+
+

+

+

+

+
+

+

Figure 3: Mean log-evidence per stage of the game (each point is an average over an interval of 30 moves).

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

Minorization-Maximization

rs

rs

rs

rs

rs

rs

rs
rs

rs
rs

rs
rs

rs
rs rs rs rs rs rs rs

rs

Stern, Herbrich, and Graepel (2006)

+

+

+

+
+

+
+

+
+

+ + + + + + + + + + +

+
Araki,Yoshida,Tsuruoka, and Tsujii (2007)

rs

rs

rs

rs

rs

Figure 4: Cumulative distribution: probability of finding the target move within then best estimated moves.

9

less (Marchand, 2007). All those prediction rates were measured on different test sets, which, although they are
of similar nature, reduces the significance of the comparison.

Despite the similarity of the cumulative distributions, the mean log-evidence per stage of the game has a very
different shape from that of Stern, Herbrich, and Graepel. Their algorithm provides much better predictions in
the beginning of the game, and much worse in the middle. It is worth noting also that their learning experiments
used many more games (181,000 instead of 652) and shape patterns (12,000,000 instead of 16,780). So they tend
to learn standard opening sequences by rote, whereas our algorithm learns more general rules.

Minorization-maximization took about one hour of CPU time and 600 Mb of RAM to complete. So, to try
to improve prediction further, it would be possible to use more games, and more shape patterns. Most of the
computation time was taken by running the Monte-Carlo simulations. In order to learn over many more games,
the slow features could be trained afterward, over a small set of games.

Although minorization-maximization is rather efficient, it is still more computationaly intensive than the incre-
mental algorithm of Stern, Herbrich, and Graepel, when applied to the same amount of data. Their incremental
approach requires more approximations, and does not compute an exact maximuma posteriori, but makes it
possible to work with a huge number of sample moves. The idea introduced in this paper, of considering moves
as teams of features, could be easily transposed into such anincremental algorithm, by ranking individuals from
team results with the TrueSkillTM rating system (Herbrich, Minka, and Graepel, 2006).

4. USAGE OF PATTERNS IN A MONTE-CARLO PROGRAM

Despite the clever features of this pattern-learning system, selecting the move with the highest probability still
produces a terribly weak Go player. It plays some good-looking moves, but also makes huge blunders because
it really does not “understand” the position. Nevertheless, the domain knowledge contained in patterns is very
precious to improve a Monte-Carlo program, by providing a good probability distribution for random games,
and by helping to shape the search tree. This section briefly describes how patterns are used in CRAZY STONE

(Coulom, 2006).

4.1 Random Simulations

The pattern system described in this paper produces a probability distribution over legal moves, so it is a perfect
candidate for random move selection in Monte-Carlo simulations. Monte-Carlo simulations have to be very fast,
so the full set of features that was described before is much too slow. Only light-weight features are kept in the
learning system: 3x3 shapes, extension (without ladder knowledge), capture (without ladder knowledge), self-
atari, and contiguity to the previous move. Contiguity to the previous move is a very strong feature (γ = 11), and
tends to produce sequences of contiguous moves like in MOGO (Gelly et al., 2006).

4.2 Progressive Widening of the Monte-Carlo Search Tree

CRAZY STONE also uses patterns to prune the search tree. This is performed at a much slower rate, so the full
power of complex features can be used. When a node in the Monte-Carlo search tree is created, it is searched
for a while without any pruning, selecting the move according to the policy of random simulations. As soon as a
number of simulations is equal to the number of points of the board, this node is promoted to internal node, and
pruning is applied. Pruning consists in searching only then best moves according to patterns, withn growing like
the logarithm of the number of random simulations. More precisely, thenth move is added whentn−1 simulations
have been run, witht0 = 0 andtn+1 = tn + 40×1.4n. On 19×19, thanks to the distance-to-the-previous-move
feature, progressive widening tends to produce a local search, like in MOGO (Gelly et al., 2006).

Progressive widening was independently invented by Chaslot et al. (2007) under the name of “progressive un-
pruning”. It is also similar in spirit to Cazenave’s idea of iterative widening (2001).

10 ICGA Journal January, 2007

Pat. P.W. Size Minutes/game GNU Level Komi Games Win ratio
- - 9×9 1.5 10 6.5 170 38.2%
x - 9×9 1.5 10 6.5 170 68.2%
x x 9×9 1.5 10 6.5 170 90.6%
- - 19×19 32 8 6.5 192 0.0%
x - 19×19 32 8 6.5 192 0.0%
x x 19×19 32 8 6.5 192 37.5%
x x 19×19 128 8 6.5 192 57.1%

Table 2: Match results. P.W.= progressive widening. Pat.= patterns in simulations.

4.3 Performance against GNU GO

Table 2 summarizes CRAZY STONE’s performance against GNU GO 3.6, on an AMD Opteron at 2.2 GHz,
running on one CPU. CRAZY STONE ran, per second, from the empty position, 15,500 simulations on 9×9, and
3,700 on 19×19.

Results indicate that using patterns in simulations and progressive widening both bring significant improvements
to the playing strength on 9×9. On 19×19 the contribution of progressive widening to the playing strength is
huge, and playing strength scales with computational power.

5. CONCLUSION

The research presented in this paper demonstrates that a generalized Bradley-Terry model is a very powerful
technique for pattern learning in the game of Go. It is simpleand efficient, can combine several features, and
produces a probability distribution over legal moves. It isan ideal tool to incorporate domain knowledge into
Monte-Carlo tree search.

Experiment results clearly indicate that significant progress can be made by learning shapes over a larger amount
of training games, and improving features. In particular, the principle of Monte-Carlo features is very powerful,
and could be exploited more, as Bouzy did with history and territory heuristics (Bouzy, 2006).

Also, the validity of the model could be tested and improved.First, using all the moves of one game as sample data
breaks the hypothesis of independence between samples, since consecutive positions are very similar. Sampling
one or two positions per game might be better. Also, the linearity hypothesis of the generalized Bradley-Terry
model, according to which the strength of a team is the sum of the strengths of its members, is likely to be wrong.
Estimating the strength of some frequent feature pairs separately might improve predictions.

ACKNOWLEDGMENTS

I thank David Stern, Ralf Herbrich and Thore Graepel for kindly providing files with their performance data. I
am also grateful to the reviewers of the Computer Games Workshop and the ICGA Journal, as well as the readers
of the computer-go mailing list for their comments that helped to improve this paper.

6. REFERENCES

Araki, N., Yoshida, K., Tsuruoka, Y., and Tsujii, J. (2007).Move Prediction in Go with the Maximum Entropy
Method. Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Games(eds. A. Blair,
S.-B. Cho, and S. M. Lucas), pp. 189–195.

Bouzy, B. (2005). Associating domain-dependent knowledgeand Monte-Carlo approaches within a Go program.
Information Sciences, Heuristic Search and Computer Game Playing IV, Vol. 175, No. 4, pp. 247–257.

Bouzy, B. (2006). History and Territory Heuristics for Monte-Carlo Go.New Mathematics and Natural Compu-
tation, Vol. 2, No. 2, pp. 1–8.

11

Bouzy, B. and Chaslot, G. (2005). Bayesian generation and integration of K-nearest-neighbor patterns for 19x19
Go. IEEE Symposium on Computational Intelligence in Games(eds. G. Kendall and S. Lucas), pp. 176–181,
Colchester, UK.

Cazenave, T. (2001). Iterative Widening.Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence(ed. B. Nebel), pp. 523–528, Morgan Kaufmann.

Chaslot, G., Winands, M., Bouzy, B., Uiterwijk, J. W. H. M., and Herik, H. J. van den (2007). Progressive
Strategies for Monte-Carlo Tree Search.Proceedings of the 10th Joint Conference on Information Sciences(ed.
P. Wang), pp. 655–661, Salt Lake City, USA.

Coulom, R. (2006). Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.Proceedings of
the 5th International Conference on Computer and Games(eds. H. J. van den Herik, P. Ciancarini, and H. J.
Donkers), Vol. 4630/2007 ofLecture Notes in Computer Science, pp. 72–83, Springer, Turin, Italy.

Dahl, F. A. (1999). Honte, a Go-Playing Program Using NeuralNets. 16th International Conference on Ma-
chine Learning, Workshop Notes: Machine Learning in Game Playing (eds. J. F̈urnkranz and M. Kubat), Bled,
Slovenia.

Elo, A. E. (1978).The Rating of Chessplayers, Past and Present. Arco Publishing, New York.

Enderton, H. (1991). The Golem Go program. Technical ReportCMU-CS-92-101, School of Computer Science,
Carnegie-Mellon University.

Gelly, S., Wang, Y., Munos, R., and Teytaud, O. (2006). Modification of UCT with Patterns in Monte-Carlo Go.
Technical Report RR-6062, INRIA.

Goertz, U. and Shubert, W. (2007). Game Records in SGF Format. http://www.u-go.net/
gamerecords/.

Groot, F. de (2005). Moyo Go Studio.http://www.moyogo.com/.

Herbrich, R., Minka, T., and Graepel, T. (2006). TrueSkillTM : A Bayesian Skill Rating System.Advances in
Neural Information Processing Systems 19(eds. B. Scḧolkopf, J. Platt, and T. Hoffman), pp. 569–576, MIT Press,
Vancouver, British Columbia, Canada.

Hunter, D. R. (2004). MM Algorithms for Generalized Bradley-Terry Models.The Annals of Statistics, Vol. 32,
No. 1, pp. 384–406.

Marchand, E. (2007). Dariush 6.0, patterns, and pro moves prediction. Usenet thread inrec.games.go.

Stern, D., Herbrich, R., and Graepel, T. (2006). Bayesian pattern ranking for move prediction in the game of Go.
Proceedings of the 23rd International Conference on Machine Learning(eds. W. W. Cohen and A. Moore), pp.
873–880, Pittsburgh, Pennsylvania, USA.

Stoutamire, D. (1991). Machine Learning, Game Play, and Go.Technical Report TR 91-128, Center for Au-
tomation and Intelligent Systems Research, Case Western Reserve University.

Werf, E. van der, Uiterwijk, J., Postma, E., and Herik, J. vanden (2003). Local Move Prediction in Go.Computers
and Games, Third International Conference, CG 2002(eds. J. Schaeffer, M. M̈uller, and Y. Bj̈ornsson), pp. 393–
412, Springer Verlag.

