Computing Elo Ratings of Move Patternsin the Game of Go

Rémi Coulom

Universié Charles de Gaulle, INRIA SEQUEL, CNRS GRAPPA, Lille, Franc

ABSTRACT

Move patterns are an essential method to incorporate ddknainledge into Go-playing programs.
This paper presents a new Bayesian technique for supengasting of such patterns from game
records, based on a generalization of Elo ratings. Eachlearmgye in the training data is considered
as a victory of a team of pattern features. Elo ratings ofiddial pattern features are computed from
these victories, and can be used in previously unseen @ositb compute a probability distribution
over legal moves. In this approach, several pattern feaitaegy be combined, without an exponential
cost in the number of features. Despite a very small numbt&aofing games (652), this algorithm
outperforms most previous pattern-learning algorithrogh in terms of mean log-evidence 2.69),
and prediction rate (38%). A 19x 19 Monte-Carlo program improved with these patterns redche
the level of the strongest classical programs.

1. INTRODUCTION

Many Go-playing programs use domain knowledge encodedpatierns. The kinds of patterns considered in
this paper are heuristic move patterns. These are gendeal such as “it is bad to play in the corner of the
board”, “it is good to prevent connection of two opponeningts”, “don’t fill-up your own eyes”, or “when in

atari, extend”. Such knowledge may be used to prune a seaelorder moves, or improve random simulations

in Monte-Carlo programs (Bouzy, 2005; Gedlyal, 2006).

Move patterns may be built by hand, or generated autombtidalpopular approach to automatically generate
patterns is supervised learning (Arakial, 2007; Bouzy and Chaslot, 2005; Dahl, 1999; Enderton, 1881;
Groot, 2005; Marchand, 2007; Stern, Herbrich, and Gra@086; Stoutamire, 1991; van der Wetfal, 2003):
frequent patterns are extracted and evaluated from ganoedseof strong players. In this approach, expert
knowledge is used to produce a relevant encoding of patsrdpattern features, and a machine-learning algo-
rithm evaluates them. The advantage of automatic pattarnileg over hand-made patterns is that thousands of
patterns may be generated and evaluated with little efiod,little domain expertise.

This paper presents a new supervised pattern-learningthigo based on the Bradley-Terry model. The Bradley-
Terry model is a pairwise comparison model based on the limgitfunction, and is the theoretical basis of
the Elo rating system (Elo, 1978). The principle of Elo rginas applied to chess, is that each player gets a
numerical strength estimation, computed from the obsienvatf past game results. From the ratings of players,
it is possible to estimate a probability distribution ovee butcome of future games. The same principle can be
applied to move patterns: each sample move in the trainitappdae can be considered as a victory of one pattern
over the others, and can be used to compute pattern ratingsn ¥ebed with a new position, the Elo ratings of
patterns can be used to compute a probability distributien all legal moves.

1.1 Related Work
This algorithm based on the Bradley-Terry model is very kimin spirit to some recent related works, but
provides significant differences and improvements.

The simplest approach to pattern learning consists in mieasthe frequency of play of each pattern (Bouzy and
Chaslot, 2005; de Groot, 2005). The number of times a paitgutayed is divided by the number of times it is

2 ICGA Journal January, 2007

present. This way, the strongest patterns get a highegrhénause they do not stay long without being played.
A major weakness of this approach is that, when a move is glape strengths of competing patterns are not
taken into consideration. In the Elo-rating analogy, thaild mean estimating the strength of a player with its
winning rate, regardless of the strength of opponents. Bingathe strength of opponents into account, methods
based on the Elo rating system can compute more accuragerpsitengths.

Sternet al. (2006) address the problem of taking the strength of opgsriato account by using a model ex-
tremely similar to Elo ratings. With this model, they can qurte high-quality probability distributions over
legal moves. A weakness of their approach, however, isliegtdre restricted to using only a few move features,
because the number of patterns to evaluate would grow erfiatheg with the number of features.

In order to solve the problem of combining move features,kArt al. (2007) propose a method based on
maximum-entropy classification. A major drawback of thgipeach is its very high computational cost, which
forced them to learn on a restricted subset of moves, whildéadting 8.75 days of computation to learn. Also,
it is not clear whether their method would provide a good phility distribution over moves, because, like the
frequency-based approach, it doesn’t take the strengthpdreent patterns into account.

A generalized Bradley-Terry model, when combined with thearization-maximization algorithm to compute
its maximuma posteriori addresses all the shortcomings of previous approachgsobiding the algorithmic
simplicity and efficiency of frequency-based pattern eaibn, with the power and theoretical soundness of
methods based on Bayesian inference and maximum entropy.

1.2 Paper Outline

This paper is organized as follows: Section 2 explains thaildeof the theory of minorization-maximization
and generalized Bradley-Terry models, Section 3 preseptrienental results of pattern learning, and Section 4
describes how these patterns were applied to improve a Moati® program.

2. MINORIZATION-MAXIMIZATION AND GENERALIZED BRADLEY-TERRY MODELS

This section briefly explains, independently of the probtErtearning patterns in the game of Go, the theory of
minorization-maximization and generalized Bradley-yenodels. It is based on Hunter’s paper (Hunter, 2004),
where interested readers will find more generalizationkisfrhodel, with all the convergence proofs, references,
and mathematical details.

2.1 EloRatingsand the Bradley-Terry Model

The Bradley-Terry model allows to make predictions aboatdhitcome of competitions between individuals. Its
principle consists in evaluating the strength of each iiddial i by a positive numerical valug. The stronger,
the highery. Predictions are made according to a formula that estintéegrobability that beatsj:

14

P(i beatsj) = —— .
(j) vEmy

The Elo rating of individual is defined byr; = 400logo(¥), that is to say = 104to.

2.2 Some Generalizations of the Bradley-Terry Model

The Bradley-Terry model may be generalized to handle coitiget involving more than two individuals. For

players:
Y

vie{l,....,n}, P(iwihns)= —— .
{ } () itye+...+W

Another interesting generalization consists in consiggriot only individuals, but teams. In this generalization,
they of a team is estimated as the product of yiseof its members. For instance:

ViyeYs _
ViyeYs+ YaYe + ViYsYeYr

Note that the samgmay appear in more than one team. But it may not appear manetiee in a team.

P(1-2-3 wins against 4-2 and 1-5-§-#

2.3 Relevance of Bradley-Terry Models

The choice of a Bradley-Terry model makes strong assunptmout what is being modeled, and may not
be appropriate in every situation. First, a Bradley-Terydel cannot take into consideration situations where
individual 1 beats individual 2 consistently, individuab2ats individual 3 consistently, and individual 3 beats
individual 1 consistently. The strengths are on a one-dgiveral scale, which does not allow such cycles. Also,
the generalization to teams assumes that the strength afreisehe sum (in terms of Elo ratings) of the strengths
of its members. This is also a very strong assumption thatmoaipe correct all the time.

2.4 Bayesian Inference

Bradley-Terry models, as described in the previous sestiomovide a probability distribution over the outcomes
of future competitions, given the strength of individudisit participate. Most of the time the exact value of
parameterg are unknown, and have to be estimated from the outcome otpagietitions. This estimation can
be done with Bayesian inference.

With ¥, the vector of parameters, aRtipast results, Bayes formula is:
_ = P(RP)P(y
P(jIR) = DRYP)
P(R)
It gives a posterior distribution ovef, from P(R|y), that is to say the Bradley-Terry model described in the

previous sections?(y), a prior distribution over parameters, aR@R), a normalizing constant. Parametgrs
may be estimated by findirg that maximize®(y|R).

This optimization can be made more convenient by choosirrgpathat has the same form as the Bradley-Terry
model itself. That is to say, virtual resul® will serve as a priorP(y) = P(R|y). This way, the estimation of
parameters of the model will consist in maximiziBgR, R |Y).

2.5 A Minorization-Maximization Algorithm

Minorization-Maximization is a simple algorithm to computhe maximuna posterioriof the Bradley-Terry
model.

2.5.1 Notations.

Vi, - - -, Yo are the strength parametersahdividuals.N resultsRy, .. ., Ry of independent competitions between
these individuals are known. These competitions are of thst igeneral type, as described in Section 2.2. The
probability of one competition result may be written as

_ AjY +Bij
Gij v + Dij

7

P(Rj)

whereAjj, Bjj, Gij, andD;; are factors that do not depend gnWith this notation, eacR(R;) can be written in
n different ways, each time as a function of one particylaFor instance, the example of Section 2.2 would be

Ry = 1-2-3 wins against 4-2 and 1-5-6-7

4 ICGA Journal January, 2007

y

(a) Initial guess. (b) Minorization. (c) Maximization.

Figure 1. Minorization-maximization.

and its probability
Yoys-yi

P(Ry) =
R = e T yoyey) - va T vare
S0A11 = V)3, B11 = 0,C11 = yoy5+ VsV6Y7, D11 = yale. Similarly Aoy = yay1, As1 = Yoyi, Agr = 0, etc

Ej is defined a&; = Cij y; + Djj, andW = [{]|A;j # O}| is the number of wins of individual

Y

The objective is to maximize:

4

L=T]PR)
=1

2.5.2 Derivation of the Minorization-M aximization For mula.

(Readers who do not wish to understand all the details mayssiip to the formula)

Minorization-maximization is an iterative algorithm to Rimize L. Its principle is illustrated on Figure 1. Start-
ing from an initial guesg® for y, a functionm is built, thatminorizes Lat y°. That is to saym(y°) = L(}P),
and, for ally, m(y) < L(y). The maximumy! of mis then computed. Thanks to the minorization propgyty,

is an improvement ovef®. The trick is to buildm so that its maximum can be computed in closed form. This
optimization algorithm is often much more efficient tharditimnal gradient-ascent methods.

N A+ Bij
{1 Cij ¥ + Dij
is the function to be maximized. can be considered as a functionygfand its logarithm is:

L=

N N
logL(y) = 3 log(Ajyi+Bij) — 3 log(Cijyi +Dyj) -
=1 j=1

Since eitheB;; = 0 (ie playeri is in the winning team), oAj; = O (ie playeri is not in the winning team), the
first term can be written:

N
log(Aij v + Bij) = log(Bij) + logAij +logy
,Zl (A i) J,g:o (Bij) J,B;O(i)

Terms that do not depend gncan be removed, and the function to be maximized becomes:

N
f(x) =W logx— z log(Cijx+Djj) .
=1

The logarithms in the right-hand part may be minorized byrttamgent atx = y;, as shown on Figure 2. After
removing the terms that do not dependxpthe minorizing function to be maximized becomes

N

Gijx

m(x) = W logx — _—

() =Wlog J;CiijLDij
Its derivative is

m(x) =

x| =

o
leEi

T
—logx

1-x/x—logxg «-------

0.4 0.8 1.2 1.6 2

Figure 2: Minorization of —logx atxy = 0.5 by its tangent.

The maximum ofn(x) can be found by solvingY(x) = 0:

W
X =
NG
Zj:l Ej

2.5.3 Minorization-M aximization For mula.

So, minorization-maximization consists in iterativelydaging one parametgr according to this formula:

W
-
N G
2i-1E

Y

If all the parameters are initialized to 1, and the numberasfipipants in each competition is the same, the first
iteration of minorization-maximization computes the wirm frequency of each individual. So, in some way,

minorization-maximization provides a Bayesian justificatof frequency-based pattern evaluation. But running
more than one iteration improves parameters further.

When players have different strengtli, indicates the strength of team mates dtiring competitionj, andEg;
is the overall strength of participants. With the minori@gatmaximization formula, a win counts all the more as
team mates are weak, and opposition is strong.

2.5.4 Batch Updates.

The minorization-maximization formula describes how talate just onej. It is possible to iteratively update
all they one by one, but it may be inefficient. Another possibilitydgperform batch updates. A set of mutually
exclusivey’'s may be updated in one single pass over the data. Mutuatlyigive means that they cannot be
members of the same team. The batch-update approach stifjdual convergence properties (Hunter, 2004),
and offers the opportunity to re-use computations. In paldr, I/E; need not be computed more than once in a
batch.

3. PATTERN-LEARNING EXPERIMENTSIN THE GAME OF GO

A generalized Bradley-Terry model can be applied to supedviearning of Go patterns, by considering that
each sample move is a competition, whose winner is the mogaestion, and losers are the other legal moves.

6 ICGA Journal January, 2007

Each move can be considered as a “team” of features, thugiagjdo combine a large number of such features
without a very high cost.

3.1 Data

Learning was performed on game records played by strongpayn KGS. These game records were down-
loaded from the web site of Kombilo (Goertz and Shubert, 200he training set was made of the 652 games
with no handicap of January, 2006 (131,939 moves). The é¢sias made of the 551 games with no handicap of
February, 2006 (115,832 moves). The level of play in thesgagamay not be as high as the professional records
used in previous research on pattern learning, but they thevadvantage of being publicly available for free,
and their level is more than high enough for the current le¥&o-playing programs.

3.2 Features

The learning algorithm used 8 tactical features: pass,ucapextension, self-atari, atari, distance to border,
distance to the previous move, and distance to the moved#ferprevious move. Some of these features may
take more than one value, as explained in Table 1.

The 9th feature was Monte-Carlo owner. It was computed bging63 random games from the current position.
For each point of the board, the number of final positions a@\methe player to move was counted.

The 10th feature was shape patterns. Nested circles ofsr8dim10 according to the distance defined in Table 1
are considered, similarly to Steat al. (2006). 16,780 shapes were harvested from the trainindpgdteeping
those that appear at least 625 times.

Each value that these features can take is considered aarateefindividual”, and is associated to one strength
parameten. Since values within one feature are mutually exclusivey tivere all updated together within one
iteration of the minorization-maximization algorithm.

3.3 Prior

The prior was set by adding, for eagh one virtual win, and one virtual loss, against a virtual @pgnt whose
yis 1. In the Elo-rating scale, this produces a symmetric g@bdlty distribution, with mean 0 and standard
deviation 302.

34 Reaults

Table 1 lists the values goffor all non-shape features.

Figure 3 plots the mean log-evidence per stage of the ganansighe data of Stern, Herbrich, and Graepel
(Sternet al,, 2006). This mean log-evidence is the mean logarithm of tbhbability of selecting the target move
according to the Bradley-Terry model, measured over thestds The overall mean log-evidence is -2.69, which
corresponds to an average probability of 1/14.7. Uniforobpbility gives a mean log-evidence of -5.49, which
corresponds to an average probability of 1/243.

Figure 4 is a plot of the cumulative distribution of the prbligy of finding the target move at a given rank,
measured over the test set, and compared with other authors.

3.5 Discussion

The prediction rate obtained with minorization-maximiaatand the Bradley-Terry model is the best among
those published in academic papers. de Groot (2005) cla#2%@prediction rate, but his method for measure-
ment is not very clear, and some recent manual testing ofrbigram indicate that its prediction rate may be

Feature Level y Description
Pass 1 0.17 Previous move is not a pass
2 24.37 Previous move is a pass
Capture 1 30.68 String contiguous to new string in atari
2 0.53 Re-capture previous move
3 2.88 Prevent connection to previous move
4 3.43 String not in a ladder
5 0.30 String in a ladder
Extension 1 11.37 New atari, not in a ladder
2 0.70 New atari, in a ladder
Self-atari 1 0.06
Atari 1 1.58 Ladder atari
2 10.24 Atari when there is a ko
3 1.70 Other atari
Distance to border 1 0.89
2 1.49
3 1.75
4 1.28
Distance to 2 4.32 d(dx, dy) = |6x| + |dy| + max(|6x|,|dY]|)
previous move 3 2.84
4 2.22
5 1.58
16 0.33
> 17 0.21
Distance to 2 3.08
the move before 3 2.38
the previous move 4 2.27
5 1.68
16 0.66
> 17 0.70
MC Owner 1 0.04 6-7
2 1.02 8-15
3 2.41 16-23
4 1.41 24-31
5 0.72 32-39
6 0.65 40- 47
7 0.68 48-55
8 0.13 56-63

Table 1: Model parameters for non-shape features. Each featuceilbes a property of a candidate move in the
current position. A feature might either be absent, or taleaf the values indicated in the Level column. Each
move in a Go position may combine several features, in whicde Gtsy value is the product of thgs of those
features. For instance if a move is an extension of a newgsiniratari (/ = 11.37), at distance two from the
border { = 1.49), distance 3 from the previous move-£ 2.84), distance 2 to the move befone=£ 3.08), on
undecided territory with MC Owner = 4/(= 1.41), then itsyis 1137 x 1.49x 2.84 x 3.08 x 1.41, that is to say
about 209.

ICGA Journal January, 2007

16 T T T T UL
\ Minorization-Maximization ——<——
18 Stern, Herbrich, and Graepel (2006) - + - - _|

0 50 100 150 200 250 300

Figure 3: Mean log-evidence per stage of the game (each point is angeever an interval of 30 moves).

1 T T T T T T T T T
Minorization-Maximization ——<——
Stern, Herbrich, and Graepel (2006) - + - -
0.9 Araki,Yoshida, Tsuruoka, and Tsuijii (2007)- - -0--- -

Figure 4: Cumulative distribution: probability of finding the tatgaove within then best estimated moves.

less (Marchand, 2007). All those prediction rates were mregison different test sets, which, although they are
of similar nature, reduces the significance of the compariso

Despite the similarity of the cumulative distributionsetimean log-evidence per stage of the game has a very
different shape from that of Stern, Herbrich, and GraepékiiTalgorithm provides much better predictions in
the beginning of the game, and much worse in the middle. lbijlwnoting also that their learning experiments
used many more games (181,000 instead of 652) and shapapdfte,000,000 instead of 16,780). So they tend
to learn standard opening sequences by rote, whereas owitlahg learns more general rules.

Minorization-maximization took about one hour of CPU timeda600 Mb of RAM to complete. So, to try
to improve prediction further, it would be possible to userengames, and more shape patterns. Most of the
computation time was taken by running the Monte-Carlo satiohs. In order to learn over many more games,
the slow features could be trained afterward, over a smidifsgames.

Although minorization-maximization is rather efficientjs still more computationaly intensive than the incre-
mental algorithm of Stern, Herbrich, and Graepel, wheniagdpb the same amount of data. Their incremental
approach requires more approximations, and does not cengpuexact maximura posteriorj but makes it
possible to work with a huge number of sample moves. The ikeaduced in this paper, of considering moves
as teams of features, could be easily transposed into sudler@mental algorithm, by ranking individuals from
team results with the TrueSKilf rating system (Herbrich, Minka, and Graepel, 2006).

4. USAGE OF PATTERNSIN A MONTE-CARLO PROGRAM

Despite the clever features of this pattern-learning systelecting the move with the highest probability still
produces a terribly weak Go player. It plays some good-lmpknoves, but also makes huge blunders because
it really does not “understand” the position. Neverthelélss domain knowledge contained in patterns is very
precious to improve a Monte-Carlo program, by providing adyprobability distribution for random games,
and by helping to shape the search tree. This section brieflgribes how patterns are used iRAZY STONE
(Coulom, 2006).

4.1 Random Simulations

The pattern system described in this paper produces a plibpdtstribution over legal moves, so it is a perfect
candidate for random move selection in Monte-Carlo sinmutagt Monte-Carlo simulations have to be very fast,
so the full set of features that was described before is magislbw. Only light-weight features are kept in the
learning system: 3x3 shapes, extension (without laddewlatye), capture (without ladder knowledge), self-
atari, and contiguity to the previous move. Contiguity te grevious move is a very strong featuye<{11), and
tends to produce sequences of contiguous moves likeas ®(Gelly et al., 2006).

4.2 Progressive Widening of the Monte-Carlo Search Tree

CRAZzY STONE also uses patterns to prune the search tree. This is pedaatreemuch slower rate, so the full
power of complex features can be used. When a node in the M2arle-search tree is created, it is searched
for a while without any pruning, selecting the move accagdimthe policy of random simulations. As soon as a
number of simulations is equal to the number of points of a8, this node is promoted to internal node, and
pruning is applied. Pruning consists in searching onlyntbest moves according to patterns, witgrowing like

the logarithm of the number of random simulations. More izedyg, thenth move is added whepR_; simulations
have been run, withh = 0 andty, 1 =ty +40x 1.4". On 19x 19, thanks to the distance-to-the-previous-move
feature, progressive widening tends to produce a locatkebke in MoGo (Gelly et al,, 2006).

Progressive widening was independently invented by Chaslal. (2007) under the name of “progressive un-
pruning”. It is also similar in spirit to Cazenave’s idea trative widening (2001).

10 ICGA Journal January, 2007

Pat. P.W. Size Minutes/game GNU Level Komi Games Win ratio
- - 9x9 1.5 10 6.5 170 38.2%
X - 9x9 1.5 10 6.5 170 68.2%
X X 9x9 1.5 10 6.5 170 90.6%
- - 19x 19 32 8 6.5 192 0.0%
X - 19x 19 32 8 6.5 192 0.0%
X X 19x 19 32 8 6.5 192 37.5%
X X 19x 19 128 8 6.5 192 57.1%

Table 2: Match results. P.W= progressive widening. Pat patterns in simulations.

4.3 Performance against GNU Go

Table 2 summarizes ®Azy STONE's performance against GNU @&3.6, on an AMD Opteron at 2.2 GHz,
running on one CPU. RAZY STONE ran, per second, from the empty position, 15,500 simulat@n9x 9, and
3,700 on 19 19.

Results indicate that using patterns in simulations andnessive widening both bring significant improvements
to the playing strength on:99. On 19x 19 the contribution of progressive widening to the playitrgsgth is
huge, and playing strength scales with computational power

5. CONCLUSION

The research presented in this paper demonstrates thatsatieed Bradley-Terry model is a very powerful
technique for pattern learning in the game of Go. It is singid efficient, can combine several features, and
produces a probability distribution over legal moves. lafsideal tool to incorporate domain knowledge into
Monte-Carlo tree search.

Experiment results clearly indicate that significant pesgrcan be made by learning shapes over a larger amount
of training games, and improving features. In particulae, principle of Monte-Carlo features is very powerful,
and could be exploited more, as Bouzy did with history andttey heuristics (Bouzy, 2006).

Also, the validity of the model could be tested and improv&dst, using all the moves of one game as sample data
breaks the hypothesis of independence between samples,csinsecutive positions are very similar. Sampling
one or two positions per game might be better. Also, the tihehypothesis of the generalized Bradley-Terry
model, according to which the strength of a team is the suieo$trengths of its members, is likely to be wrong.
Estimating the strength of some frequent feature pairsraggig might improve predictions.

ACKNOWLEDGMENTS

| thank David Stern, Ralf Herbrich and Thore Graepel for kimutoviding files with their performance data. |
am also grateful to the reviewers of the Computer Games Wogkand the ICGA Journal, as well as the readers
of the computer-go mailing list for their comments that eelpo improve this paper.

6. REFERENCES

Araki, N., Yoshida, K., Tsuruoka, Y., and Tsujii, J. (200®love Prediction in Go with the Maximum Entropy
Method. Proceedings of the 2007 IEEE Symposium on Computationelliignce and Gamggds. A. Blair,
S.-B. Cho, and S. M. Lucas), pp. 189-195.

Bouzy, B. (2005). Associating domain-dependent knowleigkMonte-Carlo approaches within a Go program.
Information Sciences, Heuristic Search and Computer Gdayeng IV, Vol. 175, No. 4, pp. 247-257.

Bouzy, B. (2006). History and Territory Heuristics for MenCarlo Go.New Mathematics and Natural Compu-
tation Vol. 2, No. 2, pp. 1-8.

11

Bouzy, B. and Chaslot, G. (2005). Bayesian generation aedtiation of K-nearest-neighbor patterns for 19x19
Go. IEEE Symposium on Computational Intelligence in Garfesss. G. Kendall and S. Lucas), pp. 176-181,
Colchester, UK.

Cazenave, T. (2001). Iterative Widenind?roceedings of the Seventeenth International Joint Cender on
Artificial Intelligence(ed. B. Nebel), pp. 523-528, Morgan Kaufmann.

Chaslot, G., Winands, M., Bouzy, B., Uiterwijk, J. W. H. MndaHerik, H. J. van den (2007). Progressive
Strategies for Monte-Carlo Tree Sear@roceedings of the 10th Joint Conference on Informatiopr&®eiged.
P. Wang), pp. 655-661, Salt Lake City, USA.

Coulom, R. (2006). Efficient Selectivity and Backup Operat Monte-Carlo Tree SearchProceedings of
the 5th International Conference on Computer and Gaeeds. H. J. van den Herik, P. Ciancarini, and H. J.
Donkers), Vol. 4630/2007 dfecture Notes in Computer Sciengp. 72—83, Springer, Turin, Italy.

Dahl, F. A. (1999). Honte, a Go-Playing Program Using Neltels. 16th International Conference on Ma-
chine Learning, Workshop Notes: Machine Learning in GanagiR§ (eds. J. Brnkranz and M. Kubat), Bled,
Slovenia.

Elo, A. E. (1978).The Rating of Chessplayers, Past and Prese&mb Publishing, New York.

Enderton, H. (1991). The Golem Go program. Technical Repbtt)-CS-92-101, School of Computer Science,
Carnegie-Mellon University.

Gelly, S., Wang, Y., Munos, R., and Teytaud, O. (2006). Madiion of UCT with Patterns in Monte-Carlo Go.
Technical Report RR-6062, INRIA.

Goertz, U. and Shubert, W. (2007). Game Records in SGF Forméattp://ww. u- go. net/
ganer ecor ds/ .

Groot, F. de (2005). Moyo Go Studibt t p: / / www. moyogo. cond .

Herbrich, R., Minka, T., and Graepel, T. (2006). TrueSKt A Bayesian Skill Rating SystemAdvances in
Neural Information Processing Systemdqd@s. B. Scblkopf, J. Platt, and T. Hoffman), pp. 569-576, MIT Press,
Vancouver, British Columbia, Canada.

Hunter, D. R. (2004). MM Algorithms for Generalized Bradlégrry Models. The Annals of Statisti¢d/ol. 32,
No. 1, pp. 384-406.

Marchand, E. (2007). Dariush 6.0, patterns, and pro mowedigiion. Usenet thread inec. ganes. go.

Stern, D., Herbrich, R., and Graepel, T. (2006). Bayesidteparanking for move prediction in the game of Go.
Proceedings of the 23rd International Conference on Machéarning(eds. W. W. Cohen and A. Moore), pp.
873-880, Pittsburgh, Pennsylvania, USA.

Stoutamire, D. (1991). Machine Learning, Game Play, and Gaxhnical Report TR 91-128, Center for Au-
tomation and Intelligent Systems Research, Case WestamgrR®eUniversity.

Werf, E. van der, Uiterwijk, J., Postma, E., and Herik, J. dan (2003). Local Move Prediction in GEBomputers
and Games, Third International Conference, CG 2@@8. J. Schaeffer, M. Mler, and Y. Bprnsson), pp. 393—
412, Springer Verlag.

