
A Model-Based Actor-Critic Algorithm in Continuous Time and Space

Rémi Coulom Remi.Coulom@loria.fr
CORTEX Group, LORIA, Nancy, France

Abstract
This paper presents a model-based actor-
critic algorithm in continuous time and space.
Two function approximators are used: one
learns the policy (the actor) and the other
learns the state-value function (the critic).
The critic learns with the TD(λ) algorithm
and the actor by gradient ascent on the
Hamiltonian. A similar algorithm had been
proposed by Doya, but this one is more gen-
eral. This algorithm was applied success-
fully to teach simulated articulated robots to
swim.

1. Introduction

Although the traditional theoretical framework of re-
inforcement learning is discrete, this method can still
be applied to decision problems in continuous time and
space. It can be done either by discretizing the prob-
lem, or by using continuous formulations of learning al-
gorithms. The latter approach avoids approximation
errors introduced by the discretization of states and
actions, so it is usually more efficient (Doya, 2000).

Unlike the usual purely critic TD(λ) method, which
consists in using a greedy policy with respect to the es-
timated value function, the actor-critic algorithm uses
two function approximators. An actor provides an
action as a function of state, and a critic estimates
the value function. They adjust each other during the
learning process.

This kind of learning algorithm may seem uselessly
more complex than the purely critic algorithm, but
it still has some advantages. First, once learning is
over, the critic is not necessary anymore, and the ac-
tor alone is enough to control the system. This ac-
tor has often a much lower computational cost than
finding the greedy action with respect to some value
function. Besides, using a continuous actor solves all
the problems related to the discontinuity of the greedy
control (Coulom, 2002). Lastly, although there is no
convergence proof for the algorithm presented in this

paper, the optimization performed in the actor-critic
algorithm seems more theoretically sound, and may
provide better convergence in practice than the purely
critic algorithm.

The rest of this paper presents the formulation of this
continuous actor-critic algorithm, and experimental
results obtained with this method.

2. Algorithm

2.1 Problem Definition

In general, we will suppose that we are to solve motor
problems defined by:

• states ~x ∈ S ⊂ Rp,

• controls ~u ∈ U ⊂ Rq,

• system dynamics f : S × U 7→ Rp,

• a reward function r : S × U 7→ R,

• a shortness factor sγ ≥ 0 (γ = e−sγδt).

A strategy or policy is a function π : S 7→ U that maps
states to controls. Applying a policy from a starting
state ~x0 at time t0 produces a trajectory ~x(t) defined
by the ordinary differential equation

∀t ≥ t0 ~̇x = f
(

~x, π(~x)
)

,

~x(t0) = ~x0 .

The value function of π is defined by

V π(~x0) =
∫ ∞

t=t0

e−sγ(t−t0)r
(

~x(t), π
(

~x(t)
)

)

dt .

The goal is to find a policy that maximizes the to-
tal amount of reward over time, whatever the starting
state ~x0. More formally, the problem consists in find-
ing π∗ so that

∀~x0 ∈ S V π
∗
(~x0) = max

π:S 7→U
V π(~x0) .



2.2 TD(λ) Policy Evaluation

The algorithm used in experiments reported in this
paper is Doya’s (Doya, 2000) continuous TD(λ). It is
a continuous version of Sutton’s discrete algorithm.

In order to approximate the optimal value function V ∗

with a parametric function approximator V~w, where ~w
is the vector of weights (parameters), the continuous
TD(λ) algorithm consists in integrating an ordinary
differential equation:



















~̇w = ηH~e ,

~̇e = −(sγ + sλ)~e+
∂V~w(~x)
∂ ~w

,

~̇x = f
(

~x, π(~x)
)

,

with

H = r
(

~x, π(~x)
)

− sγV~w(~x) +
∂V~w
∂~x
· f
(

~x, π(~x)
)

.

H is the Hamiltonian and is a continuous equivalent of
Bellman’s residual. H > 0 indicates a “good surprise”
and causes and increase in the past values, whereas
H < 0 is a “bad surprise” and causes a decrease in
the past values. The magnitude of this change is con-
trolled by the learning rate η, and its time extent in
the past is defined by the parameter sλ. sλ can be
related to the traditional λ parameter in the discrete
algorithm by λ = e−sλδt. ~e is the vector of eligibility
traces. Learning is decomposed into several episodes,
each starting from a random initial state, thus insuring
exploration of the whole state space.

2.3 Policy Improvement

The actor-critic algorithm consists in using a paramet-
ric function approximator for the policy. π~θ depends
on a vector of parameters ~θ. ~θ varies according to:

~̇θ = ηθ
∂H
∂~θ

.

Gradient ascent of the Hamiltonian is a classical tech-
nique for parametric optimization of policies in finite-
horizon deterministic optimal control problems (White
& Jordan, 1992). Those are purely critic methods
that estimate the value gradient thanks to Pontrya-
gin’s maximum principle. The actor-critic approach is
based on Bellman’s maximum principle and allows to
apply this method to infinite-horizon and stochastic
problems.

This gradient-ascent equation can also be viewed as a
continuous equivalent of a discrete theorem proved in
(Marbach & Tsitsiklis, 2001). In fact, this gradient-
ascent method is justified in the average-reward case,

not the discounted case. So, the algorithm presented
here should be re-formulated in the average-reward
framework to be a little more sound.

This actor-critic algorithm is a generalization of what
Doya proposed (Doya, 2000). The actor-critic algo-
rithm he described is in fact similar to gradient ascent
on the Hamiltonian, but it works only in the partic-
ular case of the pendulum swing-up task. The algo-
rithm presented here can be applied to any continuous
problem.

3. Experiments

Experiments were run with the swimmer problem de-
scribed in (Coulom, 2002), using feedforward neural
networks as actors and critics. The performance of
the actor-critic algorithm looks similar to what was
obtained in the purely critic case: swimmers made
progress at roughly the same speed. There were also
instabilities. But they are of a different kind, and
swimming techniques obtained differ a little. It seems
that the more neurons in the critic, the more stable
the algorithm: a higher number of neurons provides
a more accurate estimation of the value function, so
it is likely to provide a better direction for gradient
ascent for policy improvement. More experiments are
required to test this further.

Acknowledgements

I thank Rémi Munos for his comments that helped to
improve this paper.

References
Coulom, R. (2002). Reinforcement learning using neu-
ral networks, with applications to motor control.
Doctoral dissertation, Institut National Polytech-
nique de Grenoble.

Doya, K. (2000). Reinforcement learning in continuous
time and space. Neural Computation, 12, 243–269.

Marbach, P., & Tsitsiklis, J. N. (2001). Simulation-
based optimization of markov reward processes.
IEEE Transactions on Automatic Control, 46, 191–
209.

White, D. A., & Jordan, M. I. (1992). Optimal con-
trol: A foundation for intelligent control. In D. A.
White and D. A. Sofge (Eds.), Handbook of in-
telligent control—neural, fuzzy, and adaptative ap-
proaches. New York: Van Nostrand Reinhold.


