
Treemaps for Search-Tree Visualization

Rémi Coulom

July, 2002

Abstract

Large Alpha-Beta search trees generated by game-playing programs are hard
to represent graphically. This paper describes how treemaps can be applied to the
visualization of these trees. The principle of treemaps is presented, and difficulties
of its application to the particular structure of search trees are reviewed. An orig-
inal “ordered squarified” layout is proposed. It has been implemented in a freely
available program, that can be easily re-used by computer-chess programmers.

Introduction

Many game-playing programs are based on the alpha-beta algorithm [5] and can ex-
plore huge search trees in a few seconds. Being able to visualize these large trees
could be of a great help to tune search algorithms. Unfortunately, they may have mil-
lions of nodes (up to 200 million nodes per second for Deep Blue [3]), and traditional
node-and-link diagrams do not allow to represent them conveniently.

Treemaps, developed by Shneiderman and Johnson [6, 4], are particularly well
adapted to this problem. They are extremely efficient to represent extensive attributes
(size, cost, value) of elements organized in a hierarchy. Their first application was the
visualization of disk usage in a large directory structure. This paper shows how the
visualization of search trees can also take advantage of treemaps properties.

The first section of this paper presents the general basic principle of treemap visu-
alization. The second part deals with aspects of this problem that are specific to alpha-
beta trees. In particular, obtaining a good aspect ratio for rectangles while keeping
move-ordering information is a key issue. An “ordered squarified” layout is proposed
to solve this problem.

1 Principle

Figure 1 illustrates the principle of treemaps. The whole tree is represented as a rect-
angle. Each sub-tree is represented as a sub-rectangle of its parent rectangle. At the
first level of the hierarchy, the whole rectangle is split vertically. Then, sub-rectangles
are split horizontally. Sub-sub-rectangles are split vertically, and so on. Each splitting
is done so that the area covered by a rectangle is proportional to the number of nodes
it contains.

1



e4 e3 d4

e5 c5 d5 Nf6

c4 Nf3

(a) A traditional node-and-link representation of a tree

e4 e3 d4

c5

e5

Nf6

d5

c4 Nf3

(b) The corresponding treemap

Figure 1: Principle of treemap visualization

2



Figure 2: Poor aspect ratios with the standard slice-and-dice layout

1.1 Color Scheme

Besides the size of each node, which is represented by the area of its rectangle, it is
possible to represent other information by selecting the color used to fill the rectangle.
This information can be of any kind: extension, cutoff, check, depth, player to move,
hash-table hit,etc.

In the screen captures presented in this paper, brightness indicates the depth of the
node. More precisely, the color level is equal to

level=
flatness

depth+flatness−1
,

where “flatness” is a constant parameter. This formula gives an effect of depth to the
treemap. Beta cutoffs have a higher red component. Nodes wasted because of a bad
move ordering have a higher green component.

2 Efficient Layout Algorithm

The simple slicing algorithm that was presented in the previous section has serious
shortcomings. When visualizing search trees, more sophisticated techniques are re-
quired. This section explains why, and what better layout algorithms can be used.

2.1 Aspect Ratio Problems

The basic layout presented in the previous section is called “slice and dice”. Regardless
of the shape of the parent rectangle, it is sliced vertically or horizontally, depending on
the depth of the node. Unfortunately, this causes a lot of problems for alpha-beta trees.
Very often, a single move causes a beta cutoff, and is followed by a full-width extension
of the tree. Each of these moves is then followed by a single move that fails high and so
on. As a consequence, rectangles are always sliced in the same direction and become
extremely thin. Figure 2 illustrate this with a chess tree generated from the starting
position.

3



Figure 3: An ordered squarified treemap

This problem can be solved by using more clever algorithms to split the area of one
rectangle into sub-rectangles. In particular, Brulset al. proposed a “squarified” layout
algorithm [2]. The principle of this method consists in enforcing an aspect ratio that is
as close as possible to 1.

2.2 Move Ordering

A major difficulty with classical squarified treemaps is that they loose node-ordering
information that is extremely important to analyze the shape of search trees. In order
to solve this problem, a number of alternative layout algorithms have been proposed
[7, 1]. The strip treemap algorithm [1] is an interesting solution, that is similar to
squarified treemaps, except that rectangles are not sorted by size and all the strips are
horizontal.

A simpler way to keep ordering information consists in using the squarified treemap
layout, without sorting nodes by size. This is likely to produce better aspect ratios that
the strip-treemap algorithm, and does not require any look-ahead. Figure 3 shows a
treemap produced by this method.

Move-ordering information can be retrieved from the layouts produced by this
method, though it is not as straightforward as in the case of the strip-treemap algo-
rithm. An example of how the order of moves can be obtained is shown on Figure 4.
The first move is always at the top left, and the last move is always at the bottom right.
So, on Figure 4, e4 is the first move. In the remaining rectangle, the same principle is
applied recursively, so h3 is the next move. h3 is followed by g4, g3, and f4, because
these move form the only strip that is aligned with h3. The remaining rectangle starts
with h4 at its top left, and e3 is the only node alighned with h4 in an horizontal strip.
The same principle is applied again and the following moves are d4, d3, c4, b4, b3, a4,
a3, Nf3, Nh3, Na3, and Nc3.

4



Figure 4: The order of labeled moves is: e4, h3, g4, g3, f4, h4, e3, d4, d3, c4, b4, b3,
a4, a3, Nf3, Nh3, Na3, Nc3

2.3 Layout Stability

In order to explore the search tree, the user of the treemap visualization tool can zoom
in and out, or resize the window. The consequence is a change in the aspect ratio of
the rectangle, which may produce a completely different layout. Figure 5 illustrates
this phenomenon after zooming into the pointed node of Figure 4. This change can be
confusing, and it is desirable to find ways to prevent it. So, an option to lock the layout
has been provided, which results in Figure 6.

Conclusion

Some ideas to build a tool for search-tree visualization based on the treemap technique
have been presented. In particular, the ordered squarified treemap layout algorithm
has been proposed. It is well adapted to deal with the aspect-ratio and move-ordering
issues that arise with alpha-beta trees.

The program developed during these experiments is freely available from the au-
thor’s home page, with source and documentation. It can read any chess tree in PGN
format. This way, other programmers should be able to easily export their search trees
to this tool.

Many improvements to the current program could be made. In particuliar, it would
be nice to have a graphical board in parallel with the treemap that would display the
position of the currently selected node. Also, using it to perform a graphical “diff ”
between two chess trees might be a good way to visualize the effect of changing an
heuristic in the search algorithm.

References

[1] Benjamin B. Berderson, Ben Shneiderman, and Martin Wattenberg. Ordered and
quantum treemaps: Making effective use of 2D space to display hierarchies. In

5



Figure 5: The Layout can be lost when zooming in

Figure 6: Locking the layout produces poorer aspect ratios, but keeps a stable look of
the tree representation when zooming.

6



ACM Transactions on Computer Graphics. 2002.

[2] Mark Bruls, Kees Huizing, and Jarke J. van Wijk. Squarified treemaps. In
W. de Leeuw and R. van Liere, editors,Proceedings of Joint Eurographics and
IEEE TCVG Symposium on Visualization, pages 33–42. Springer, Vienna, 2000.

[3] Murray Campbell, A. Joseph Hoane Jr., and Feng-hsiung Hsu. Deep blue.Artificial
Intelligence, 134:57–83, 2002.

[4] Brian Johnson and Ben Shneiderman. Treemaps: a space-filling approach to the
visualization of hierarchical information structure. InProceedings of the second
International IEEE Visualization Conference, pages 284–291, October 1991.

[5] Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning.Arti-
ficial Intelligence, 6:293–326, 1975.

[6] Ben Shneiderman. Tree visualization with tree-maps: A 2-d space-filling approach.
ACM Transactions on Graphics, 11(1):92–99, January 1992.

[7] Ben Shneiderman and Martin Wattenberg. Ordered treemap layouts. InProceed-
ings of IEEE Symposium on Information Visualization. IEEE Press, Los Alamitos,
CA, 2001.

7


