The Monte-Carlo Revolution in Go

Rémi Coulom

Université Charles de Gaulle, INRIA, CNRS, Lille, France

January, 2009

JFFoS'2008: Japanese-French Frontiers of Science Symposium

Game Complexity How can we deal with complexity ?

Game Complexity

Game	Complexity*	Status
Tic-tac-toe	10 ³	Solved manually
Connect 4	10 ¹⁴	Solved in 1988
Checkers	10 ²⁰	Solved in 2007
Chess	10 ⁵⁰	Programs > best humans
Go	10 ¹⁷¹	$Programs \ll best humans$

*Complexity: number of board configurations

Game Complexity How can we deal with complexity ?

How can we deal with complexity ?

Some formal methods

- Use symmetries
- Use transpositions
- Combinatorial game theory

Game Complexity How can we deal with complexity ?

How can we deal with complexity ?

Some formal methods

- Use symmetries
- Use transpositions
- Combinatorial game theory

When formal methods fail

- Approximate evaluation
- Reasoning with uncertainty

Game Complexity How can we deal with complexity ?

Dealing with Huge Trees

Full tree

Game Complexity How can we deal with complexity ?

Dealing with Huge Trees

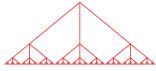
 $\begin{array}{l} {\sf Classical\ approach} = \\ {\sf depth\ limit\ +\ pos.\ evaluation\ (E)} \\ {\sf (chess,\ shogi,\ \dots)} \end{array}$

EEEEEEE

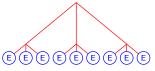
Full tree

Game Complexity How can we deal with complexity ?

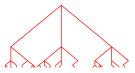
Dealing with Huge Trees



Full tree



 $\begin{array}{l} \mbox{Classical approach} = \\ \mbox{depth limit } + \mbox{ pos. evaluation (E)} \\ \mbox{ (chess, shogi, ...)} \end{array}$



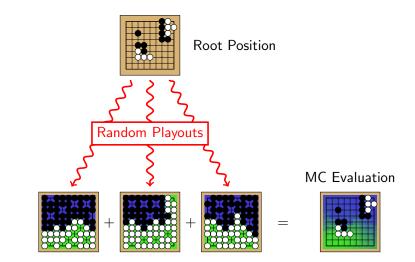
Monte-Carlo approach = random playouts

Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

A Random Playout

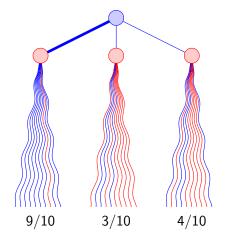
Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Principle of Monte-Carlo Evaluation



Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Basic Monte-Carlo Move Selection

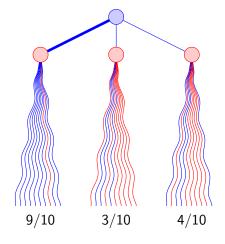


Algorithm

- N playouts for every move
- Pick the best winning rate
- 5,000 playouts/s on 19×19

Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Basic Monte-Carlo Move Selection



Algorithm

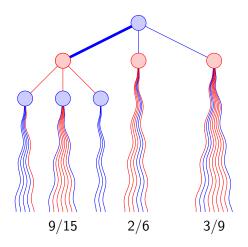
- N playouts for every move
- Pick the best winning rate
- 5,000 playouts/s on 19x19

Problems

- Evaluation may be wrong
- For instance, if all moves lose immediately, except one that wins immediately.

Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Monte-Carlo Tree Search

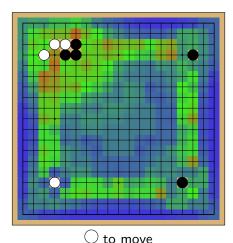


Principle

- More playouts to best moves
- Apply recursively
- Under some simple conditions: proven convergence to optimal move when #playouts→ ∞

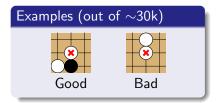
Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

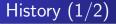
Incorporating Domain Knowledge with Patterns



Patterns

- Library of local shapes
- Automatically generated
- Used for playouts
- Cut branches in the tree





Pioneers

- 1993: Brügmann: first MC program, not taken seriously
- 2000: The Paris School: Bouzy, Cazenave, Helmstetter

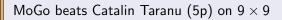
Pioneers

- 1993: Brügmann: first MC program, not taken seriously
- 2000: The Paris School: Bouzy, Cazenave, Helmstetter

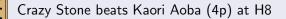
Victories against classical programs

- 2006: Crazy Stone (Coulom) wins 9×9 Computer Olympiad
- \bullet 2007: MoGo (Wang, Gelly, Munos, ...) wins 19 \times 19

Victories against professional players



MoGo beats Kim Myungwan (9p) at H9



Crazy Stone beats Kaori Aoba (4p) at H7

Conclusion

Summary of Monte-Carlo Tree Search

- A major breakthrough for computer Go
- Works similar games (Hex, Amazons) and automated planning

Conclusion

Summary of Monte-Carlo Tree Search

- A major breakthrough for computer Go
- Works similar games (Hex, Amazons) and automated planning

Perspectives

- Path to top-level human Go ?
- Adaptive playouts (far from the root) ?

Conclusion

Summary of Monte-Carlo Tree Search

- A major breakthrough for computer Go
- Works similar games (Hex, Amazons) and automated planning

Perspectives

- Path to top-level human Go ?
- Adaptive playouts (far from the root) ?

More information: http://remi.coulom.free.fr/CrazyStone/

- Slides, papers, and game records
- Demo version of Crazy Stone (soon)