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Game Complexity

Introduction

Game Complexity
How can we deal with complexity ?

Game Complexity* | Status

Tic-tac-toe | 103 Solved manually

Connect 4 | 1014 Solved in 1988

Checkers 10%° Solved in 2007

Chess 10°° Programs > best humans
Go 10171 Programs < best humans

*Complexity: number of board configurations
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Game Complexity
How can we deal with complexity ?

How can we deal with complexity ?

Some formal methods
@ Use symmetries

@ Use transpositions

@ Combinatorial game theory
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Introduction
Game Complexity
How can we deal with complexity ?

How can we deal with complexity ?

Some formal methods

@ Use symmetries

@ Use transpositions

@ Combinatorial game theory

When formal methods fail

@ Approximate evaluation

@ Reasoning with uncertainty
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Full tree
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Introduction
Game Complexity
How can we deal with complexity ?

Dealing with Huge Trees

Classical approach =
depth limit + pos. evaluation (E)
(chess, shogi, ...)

Full tree

Monte-Carlo approach =
random playouts
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Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Monte-Carlo Tree Search

A Random Playout
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Principle of Monte-Carlo Evaluation
nte-Carlo Tree Search
Patterns

Monte-Carlo Tree Search

Principle of Monte-Carlo Evaluation

Canm N
:g& Root Position

Random Playouts

g MC Evaluation
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Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Monte-Carlo Tree Search

Basic Monte-Carlo Move Selection

Algorithm
®, O O e N playouts for every move
‘( ‘{ @ Pick the best winning rate
‘ @ 5,000 playouts/s on 19x19
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Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Monte-Carlo Tree Search

Basic Monte-Carlo Move Selection

Algorithm
®, O O e N playouts for every move
( ( @ Pick the best winning rate

@ 5,000 playouts/s on 19x19

o Evaluation may be wrong

@ For instance, if all moves
lose immediately, except one
that wins immediately.

9/10 3/10 4/10
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Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Monte-Carlo Tree Search

Monte-Carlo Tree Search

@ More playouts to best
moves

@ Apply recursively

@ Under some simple
conditions: proven
convergence to optimal
move when
#playouts— oo

9/15 2/6 3/9
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Carlo Evaluation

Monte-Carlo Tree Search

@ Library of local shapes
@ Automatically generated
@ Used for playouts

@ Cut branches in the tree

Examples (out of ~30k)

O to move
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History

History (1/2)

Pioneers

@ 1993: Briigmann: first MC program, not taken seriously
@ 2000: The Paris School: Bouzy, Cazenave, Helmstetter
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History

History (1/2)

Pioneers

@ 1993: Briigmann: first MC program, not taken seriously
@ 2000: The Paris School: Bouzy, Cazenave, Helmstetter

Victories against classical programs

@ 2006: Crazy Stone (Coulom) wins 9 x 9 Computer Olympiad
@ 2007: MoGo (Wang, Gelly, Munos, ...) wins 19 x 19
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History (2/2)

History

Victories against professional players

e 2008-03:

e 2008-08:

e 2008-09:

e 2008-12:

MoGo beats Catalin Taranu (5p) on 9 x 9
MoGo beats Kim Myungwan (9p) at H9
Crazy Stone beats Kaori Aoba (4p) at H8

Crazy Stone beats Kaori Aoba (4p) at H7
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Conclusion

Conclusion

Summary of Monte-Carlo Tree Search
@ A major breakthrough for computer Go

@ Works similar games (Hex, Amazons) and automated planning
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Conclusion

Conclusion

Summary of Monte-Carlo Tree Search

@ A major breakthrough for computer Go

@ Works similar games (Hex, Amazons) and automated planning

Perspectives

@ Path to top-level human Go ?

e Adaptive playouts (far from the root) ?
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Conclusion

Conclusion

Summary of Monte-Carlo Tree Search
@ A major breakthrough for computer Go

@ Works similar games (Hex, Amazons) and automated planning

@ Path to top-level human Go ?

e Adaptive playouts (far from the root) ?

More information: http://remi.coulom.free.fr/CrazyStone/

@ Slides, papers, and game records

e Demo version of Crazy Stone (soon)
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