The Monte-Carlo Revolution in Go

Rémi Coulom

October, 2015

Game Complexity How can we deal with complexity ?

Game Complexity

Game	Complexity*	Status
Tic-tac-toe	10 ³	Solved manually
Connect 4	10 ¹⁴	Solved in 1988
Checkers	10 ²⁰	Solved in 2007
Chess	10 ⁵⁰	Programs > best humans
Go	10 ¹⁷¹	$Programs \ll best humans$

*Complexity: number of board configurations

Game Complexity How can we deal with complexity ?

How can we deal with complexity ?

Some formal methods

- Use symmetries
- Use transpositions
- Combinatorial game theory

Game Complexity How can we deal with complexity ?

How can we deal with complexity ?

Some formal methods

- Use symmetries
- Use transpositions
- Combinatorial game theory

When formal methods fail

- Approximate evaluation
- Reasoning with uncertainty

Game Complexity How can we deal with complexity ?

Dealing with Huge Trees

Rémi Coulom The Monte Carlo Revolution in Go

Game Complexity How can we deal with complexity ?

Dealing with Huge Trees

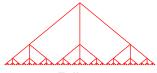
 $\begin{array}{l} \mbox{Classical approach} = \\ \mbox{depth limit} + \mbox{pos. evaluation} \ (\mbox{E}) \\ \ (\mbox{chess, shogi}, \ \ldots) \end{array}$

EEEEEEE

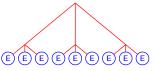
Full tree

Game Complexity How can we deal with complexity ?

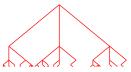
Dealing with Huge Trees



Full tree



 $\begin{array}{l} \mbox{Classical approach} = \\ \mbox{depth limit + pos. evaluation (E)} \\ \mbox{(chess, shogi, ...)} \end{array}$



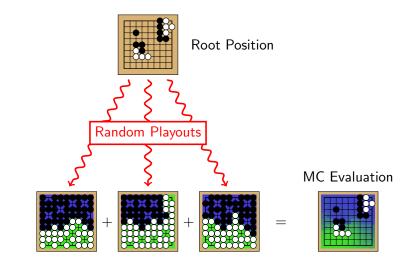
Monte-Carlo approach = random playouts

Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

A Random Playout

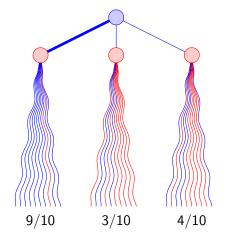
Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Principle of Monte-Carlo Evaluation



Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Basic Monte-Carlo Move Selection

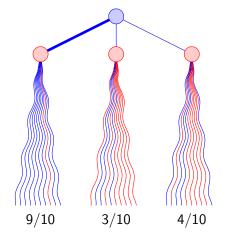


Algorithm

- N playouts for every move
- Pick the best winning rate
- 5,000 playouts/s on 19×19

Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Basic Monte-Carlo Move Selection



Algorithm

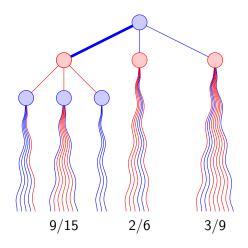
- N playouts for every move
- Pick the best winning rate
- 5,000 playouts/s on 19×19

Problems

- Evaluation may be wrong
- For instance, if all moves lose immediately, except one that wins immediately.

Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Monte-Carlo Tree Search

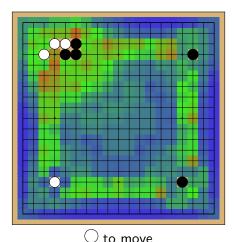


Principle

- More playouts to best moves
- Apply recursively
- Under some simple conditions: proven convergence to optimal move when #playouts→ ∞

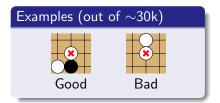
Principle of Monte-Carlo Evaluation Monte-Carlo Tree Search Patterns

Incorporating Domain Knowledge with Patterns



Patterns

- Library of local shapes
- Automatically generated
- Used for playouts
- Cut branches in the tree



Pioneers

- 1993: Brügmann: first MC program, not taken seriously
- 2000: The Paris School: Bouzy, Cazenave, Helmstetter

Pioneers

- 1993: Brügmann: first MC program, not taken seriously
- 2000: The Paris School: Bouzy, Cazenave, Helmstetter

Victories against classical programs

- 2006: Crazy Stone (Coulom) wins 9×9 Computer Olympiad
- \bullet 2007: MoGo (Wang, Gelly, Munos, \ldots) wins 19 \times 19

History (2/2)

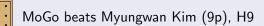
Games Against Strong Professionals

• 2008-08:

- 2012-03:
- 2013-03:

• 2014-03:

• 2015-03:



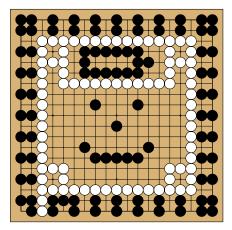
Zen beats Masaki Takemiya (9p), H4

CrazyStone beats Yoshio Ishida (9p), H4

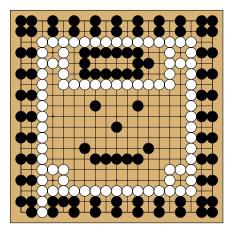
CrazyStone beats Norimoto Yoda (9p), H4

CrazyStone loses to Chikun Cho (9p), H3

Limits of the Current MC Programs



Limits of the Current MC Programs



Difficulties

- Tree search can't handle all the threats.
- Must decompose into local problems.

Conclusion

Summary of Monte-Carlo Tree Search

- A major breakthrough for computer Go
- Works similar games (Hex, Amazons) and automated planning

Conclusion

Summary of Monte-Carlo Tree Search

- A major breakthrough for computer Go
- Works similar games (Hex, Amazons) and automated planning

Perspectives

- Policy gradient for adaptive playouts
- Deep convolutional neural networks for clever patterns