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Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

Game Complexity

Game Complexity∗ Status

Tic-tac-toe 103 Solved manually
Connect 4 1014 Solved in 1988
Checkers 1020 Solved in 2007
Chess 1050 Programs > best humans
Go 10171 Programs � best humans

∗Complexity: number of board configurations
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Some formal methods
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Rémi Coulom The Monte Carlo Revolution in Go 3 / 13



Introduction
Monte-Carlo Tree Search

History
Conclusion

Game Complexity
How can we deal with complexity ?

How can we deal with complexity ?

Some formal methods

Use symmetries

Use transpositions

Combinatorial game theory

When formal methods fail

Approximate evaluation

Reasoning with uncertainty
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Dealing with Huge Trees

Full tree

E E E E E E E E E

Classical approach =
depth limit + pos. evaluation (E)

(chess, shogi, . . . )

Monte-Carlo approach =
random playouts
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Principle of Monte-Carlo Evaluation

Root Position

MC Evaluation

+ + =

Random Playouts
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Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Basic Monte-Carlo Move Selection

4/103/109/10

Algorithm

N playouts for every move

Pick the best winning rate

5,000 playouts/s on 19x19

Problems

Evaluation may be wrong

For instance, if all moves
lose immediately, except one
that wins immediately.
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Monte-Carlo Tree Search

History
Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Monte-Carlo Tree Search

3/92/69/15

Principle

More playouts to best
moves

Apply recursively

Under some simple
conditions: proven
convergence to optimal
move when
#playouts→∞
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Monte-Carlo Tree Search

History
Conclusion

Principle of Monte-Carlo Evaluation
Monte-Carlo Tree Search
Patterns

Incorporating Domain Knowledge with Patterns

to move

Patterns

Library of local shapes

Automatically generated

Used for playouts

Cut branches in the tree

Examples (out of ∼30k)

Good Bad
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Conclusion

History (1/2)

Pioneers

1993: Brügmann: first MC program, not taken seriously

2000: The Paris School: Bouzy, Cazenave, Helmstetter

Victories against classical programs

2006: Crazy Stone (Coulom) wins 9× 9 Computer Olympiad

2007: MoGo (Wang, Gelly, Munos, . . . ) wins 19× 19
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History (2/2)

Games Against Strong Professionals

2008-08: MoGo beats Myungwan Kim (9p), H9

2012-03: Zen beats Masaki Takemiya (9p), H4

2013-03: CrazyStone beats Yoshio Ishida (9p), H4

2014-03: CrazyStone beats Norimoto Yoda (9p), H4

2015-03: CrazyStone loses to Chikun Cho (9p), H3
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Conclusion

Limits of the Current MC Programs

Difficulties

Tree search can’t
handle all the threats.

Must decompose into
local problems.
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Conclusion

Summary of Monte-Carlo Tree Search

A major breakthrough for computer Go

Works similar games (Hex, Amazons) and automated planning

Perspectives

Policy gradient for adaptive playouts

Deep convolutional neural networks for clever patterns
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